Galois lattices and strongly divisible lattices in the unipotent case

被引:3
作者
Gao, Hui [1 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2017年 / 728卷
关键词
SEMI-STABLE REPRESENTATIONS; P-ADIC REPRESENTATIONS; CONSTRUCTION; CONJECTURE;
D O I
10.1515/crelle-2014-0119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime. We prove that there is an anti- equivalence between the category of unipotent strongly divisible lattices of weight p 1 and the category of Galois stable Z(p)- lattices in unipotent semi-stable representations with Hodge-Tate weights in {0,....,p-1}. This completes the last remaining piece of Breuil's conjecture ([ 6, Conjecture 2.2.6]).
引用
收藏
页码:263 / 299
页数:37
相关论文
共 17 条
[1]   A norm field application [J].
Breuil, C .
COMPOSITIO MATHEMATICA, 1999, 117 (02) :189-203
[2]   Construction of p-adic semi-stable representations [J].
Breuil, C .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (03) :281-327
[3]  
Breuil C, 1997, MATH ANN, V307, P191, DOI 10.1007/s002080050031
[4]  
Breuil C, 1999, INVENT MATH, V136, P89, DOI 10.1007/s002220050305
[5]  
Breuil C., 2002, ADV STUD PURE MATH, P51
[6]  
Cartier P., 1990, Progr. Math., V87, P249
[7]   QUASI-SEMI-STABLE REPRESENTATIONS [J].
Caruso, Xavier ;
Liu, Tong .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (02) :185-223
[8]   Construction of semi-stable p-adic representations [J].
Colmez, P ;
Fontaine, JM .
INVENTIONES MATHEMATICAE, 2000, 140 (01) :1-43
[9]  
Fontaine J.-M., THEORY P ADIC GALOIS
[10]  
FONTAINE JM, 1982, ANN SCI ECOLE NORM S, V15, P547