Auto-Encoder based Structured Dictinoary Learning

被引:0
|
作者
Liu, Deyin [1 ,2 ,3 ]
Wu, Yuanbo Lin [2 ,3 ]
Liu, Liangchen [4 ]
Hu, Qichang [5 ]
Qi, Lin [1 ]
机构
[1] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei, Peoples R China
[3] Intelligent Interconnected Syst Lab Anhui Prov, Hefei, Peoples R China
[4] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld, Australia
[5] Motovis Australia Pty Ltd Adelaide, Adelaide, SA, Australia
基金
中国国家自然科学基金;
关键词
Deep auto-encoding; Structured dictionary learning; Forward-propagation based optimization; K-SVD; DISCRIMINATIVE DICTIONARY; ALGORITHM;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Dictionary learning and deep learning are two popular representation learning paradigms, which can be combined to boost the classification task. However, existing combination methods often learn multiple dictionaries embedded in a cascade of layers, and a specialized classifier accordingly. This may inattentively lead to overfitting and high computational cost. In this paper, we present a novel deep auto-encoding architecture to learn only a dictionary for classification. To empower the dictionary with discrimination, we construct the dictionary with class-specific sub-dictionaries, and introduce supervision by imposing category constraints. The proposed framework is inspired by a sparse optimization method, namely Iterative Shrinkage Thresholding Algorithm, which characterizes the learning process by the forward-propagation based optimization w.r.t the dictionary only, reducing the number of parameters to learn and the computational cost dramatically. Extensive experiments demonstrate the effectiveness of our method in image classification.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Auto-encoder based structured dictionary learning for visual classification
    Liu, Deyin
    Liang, Chengwu
    Chen, Shaokang
    Tie, Yun
    Qi, Lin
    NEUROCOMPUTING, 2021, 438 (438) : 34 - 43
  • [2] Online deep learning based on auto-encoder
    Zhang, Si-si
    Liu, Jian-wei
    Zuo, Xin
    Lu, Run-kun
    Lian, Si-ming
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5420 - 5439
  • [3] Online deep learning based on auto-encoder
    Si-si Zhang
    Jian-wei Liu
    Xin Zuo
    Run-kun Lu
    Si-ming Lian
    Applied Intelligence, 2021, 51 : 5420 - 5439
  • [4] A Deep Learning Method Based on Hybrid Auto-Encoder Model
    Yang, ZhenYu
    Jing, Hui
    PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 1100 - 1104
  • [5] AN AUTO-ENCODER BASED APPROACH TO UNSUPERVISED LEARNING OF SUBWORD UNITS
    Badino, Leonardo
    Canevari, Claudia
    Fadiga, Luciano
    Metta, Giorgio
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [6] Semi-supervised Auto-encoder Based on Manifold Learning
    Li, Yawei
    Jin, Lizuo
    Qin, A. K.
    Sun, Changyin
    Ong, Yew Soon
    Cui, Tong
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4032 - 4039
  • [7] Learning a good representation with unsymmetrical auto-encoder
    Sun, Yanan
    Mao, Hua
    Guo, Quan
    Yi, Zhang
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (05): : 1361 - 1367
  • [8] Auto-encoder based dimensionality reduction
    Wang, Yasi
    Yao, Hongxun
    Zhao, Sicheng
    NEUROCOMPUTING, 2016, 184 : 232 - 242
  • [9] Deep auto-encoder based clustering
    Song, Chunfeng
    Huang, Yongzhen
    Liu, Feng
    Wang, Zhenyu
    Wang, Liang
    INTELLIGENT DATA ANALYSIS, 2014, 18 : S65 - S76
  • [10] Discriminative Representation Learning with Supervised Auto-encoder
    Fang Du
    Jiangshe Zhang
    Nannan Ji
    Junying Hu
    Chunxia Zhang
    Neural Processing Letters, 2019, 49 : 507 - 520