Efficiently Trained Deep Learning Potential for Graphane

被引:23
作者
Achar, Siddarth K. [1 ]
Zhang, Linfeng [2 ]
Johnson, J. Karl [3 ]
机构
[1] Univ Pittsburgh, Computat Modeling & Simulat Program, Pittsburgh, PA 15260 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; GRAPHENE; HYDROGENATION;
D O I
10.1021/acs.jpcc.1c01411
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have developed an accurate and efficient deep-learning potential (DP) for graphane, which is a fully hydrogenated version of graphene, using a very small training set consisting of 1000 snapshots from a 0.5 ps density functional theory (DFT) molecular dynamics simulation at 1000 K. We have assessed the ability of the DP to extrapolate to system sizes, temperatures, and lattice strains not included in the training set. The DP performs surprisingly well, outperforming an empirical many-body potential when compared with DFT data for the phonon density of states, thermodynamic properties, velocity autocorrelation function, and stress-strain curve up to the yield point. This indicates that our DP can reliably extrapolate beyond the limit of the training data. We have computed the thermal fluctuations as a function of system size for graphane. We found that graphane has larger thermal fluctuations compared with graphene, but having about the same out-of-plane stiffness.
引用
收藏
页码:14874 / 14882
页数:9
相关论文
共 56 条
[21]   A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance [J].
Jiang, Jin-Wu ;
Wang, Bing-Shen ;
Wang, Jian-Sheng ;
Park, Harold S. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (08)
[22]   AB-INITIO MOLECULAR-DYNAMICS SIMULATION OF THE LIQUID-METAL AMORPHOUS-SEMICONDUCTOR TRANSITION IN GERMANIUM [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1994, 49 (20) :14251-14269
[23]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[24]   ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1993, 47 (01) :558-561
[25]   Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) :15-50
[26]   First-principles investigation of graphene fluoride and graphane [J].
Leenaerts, O. ;
Peelaers, H. ;
Hernandez-Nieves, A. D. ;
Partoens, B. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2010, 82 (19)
[27]   High temperature proton exchange membranes based on polybenzimidazoles for fuel cells [J].
Li, Qingfeng ;
Jensen, Jens Oluf ;
Savinell, Robert F. ;
Bjerrum, Niels J. .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (05) :449-477
[28]   Flexural phonons and thermal transport in multilayer graphene and graphite [J].
Lindsay, L. ;
Broido, D. A. ;
Mingo, Natalio .
PHYSICAL REVIEW B, 2011, 83 (23)
[29]   State of understanding of Nafion [J].
Mauritz, KA ;
Moore, RB .
CHEMICAL REVIEWS, 2004, 104 (10) :4535-4585
[30]   Vibrational properties of graphene fluoride and graphane [J].
Peelaers, H. ;
Hernandez-Nieves, A. D. ;
Leenaerts, O. ;
Partoens, B. ;
Peeters, F. M. .
APPLIED PHYSICS LETTERS, 2011, 98 (05)