Dynamics of stochastic Lorenz-Stenflo system

被引:8
|
作者
Huang, Zaitang [1 ]
Cao, Junfei [2 ]
Jiang, Ting [1 ]
机构
[1] Guangxi Teachers Educ Univ, Sch Math Sci, Nanning 530023, Peoples R China
[2] Guangdong Univ Educ, Dept Math, Guangzhou 510310, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Lorenz-Stenflo system; Stochastic ultimate bound; Random attractor; Stochastic bifurcation; Levy noise; ACOUSTIC-GRAVITY WAVES; EQUATIONS; BIFURCATION; ATMOSPHERE; CHAOS;
D O I
10.1007/s11071-014-1562-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper discusses the Lorenz-Stenflo system under the influence of Levy noise. We find conditions under which the solution to stochastic Lorenz-Stenflo system is exponentially stable. We then investigate the estimation of the global attractive set and stochastic bifurcation behavior of the stochastic Lorenz-Stenflo system. Results show that the jump noise can make the solution stable, the bounds and bifurcation to undergo change under some conditions. Numerical results show the effectiveness and advantage of our methods.
引用
收藏
页码:1739 / 1754
页数:16
相关论文
共 50 条
  • [41] Dynamics of the Modified n-Degree Lorenz System
    Hassan, Sk Sarif
    Reddy, Moole Parameswar
    Rout, Ranjeet Kumar
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2019, 4 (02) : 315 - 330
  • [42] Complex Dynamics in the Unified Lorenz-Type System
    Yang, Qigui
    Chen, Yuming
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [43] Exploration of stochastic dynamics and complexity in an epidemic system
    He, Shaobo
    Mukherjee, Sayan
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (18-20) : 3281 - 3287
  • [44] A physically extended Lorenz system
    Moon, Sungju
    Seo, Jaemyeong Mango
    Han, Beom-Soon
    Park, Junho
    Baik, Jong-Jin
    CHAOS, 2019, 29 (06)
  • [45] Topological classification of periodic orbits in the generalized Lorenz-type system with diverse symbolic dynamics
    Dong, Chengwei
    Liu, Huihui
    Jie, Qi
    Li, Hantao
    CHAOS SOLITONS & FRACTALS, 2022, 154
  • [46] Short periodic orbits for the Lorenz system
    Galias, Zbigniew
    Tucker, Warwick
    ICSES 2008 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS, CONFERENCE PROCEEDINGS, 2008, : 285 - 288
  • [47] Global bifurcation analysis of the Lorenz system
    Gaiko, Valery A.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2014, 7 (06): : 429 - 434
  • [48] Analysis of Stochastic Nonlinear Dynamics in the Gear Transmission System with Backlash
    Wang, Jingyue
    Wang, Haotian
    Guo, Lixin
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2015, 16 (02) : 111 - 121
  • [49] Dynamics of the Fractional-Order Lorenz System Based on Adomian Decomposition Method and Its DSP Implementation
    He, Shaobo
    Sun, Kehui
    Wang, Huihai
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (05) : 1298 - 1300
  • [50] Global dynamics of the stochastic Rabinovich system
    Aimin Liu
    Lijie Li
    Nonlinear Dynamics, 2015, 81 : 2141 - 2153