A short note on the divisibility of class numbers of real quadratic fields

被引:0
作者
Chattopadhyay, Jaitra [1 ]
机构
[1] HBNI, Harish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, Uttar Pradesh, India
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any integer l >= 1, let p(1), p(2),..., p(l+2) be distinct prime numbers >= 5. For all real numbers X > 1, we let N-3,N-l (X) denote the number of real quadratic fields K whose absolute discriminant d(K) <= X and d(K) is divisible by (p(1)... p(l+2)) together with the class number h(K) of K divisible by 2(l).3. Then, in this short note, by following the method in [3], we prove that N-3,N-l (X) >> X-7/8 for all large enough X's.
引用
收藏
页码:389 / 392
页数:4
相关论文
共 14 条
[1]  
Ankeny N., 1955, Pacific J. Math., V5, P321, DOI DOI 10.2140/PJM.1955.5.321
[2]   Real quadratic fields with class number divisible by 5 or 7 [J].
Byeon, D .
MANUSCRIPTA MATHEMATICA, 2006, 120 (02) :211-215
[3]   Real quadratic fields with class number divisible by 3 [J].
Byeon, D ;
Koh, E .
MANUSCRIPTA MATHEMATICA, 2003, 111 (02) :261-263
[4]   On the number of real quadratic fields with class number divisible by 3 [J].
Chakraborty, K ;
Murty, MR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (01) :41-44
[5]   DENSITY OF DISCRIMINATS OF CUBIC FIELDS .2. [J].
DAVENPORT, H ;
HEILBRONN, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 322 (1551) :405-+
[6]  
HONDA T, 1968, J REINE ANGEW MATH, V233, P101
[7]   Parametrization of the quadratic fields whose class numbers are divisible by three [J].
Kishi, Y ;
Miyake, K .
JOURNAL OF NUMBER THEORY, 2000, 80 (02) :209-217
[8]  
Luca F., 2003, C R MATH ACAD SCI SO, V25, P71
[9]  
Murty M.R., 1999, TOPICS NUMBER THEORY, VVolume 467, P229
[10]  
Nagell T., 1922, ABH MATH SEM HAMBURG, V1, P140, DOI [DOI 10.1007/BF02940586, 10.1007/BF02940586]