Emergence of space and expansion of Universe

被引:4
作者
Basari, Hassan V. T. [1 ]
Krishna, P. B. [1 ]
Priyesh, K., V [2 ]
Mathew, Titus K. [1 ,3 ,4 ]
机构
[1] Cochin Univ Sci & Technol, Dept Phys, Kochi 22, Kerala, India
[2] St Pauls Coll, Dept Phys, Kochi 03, Kerala, India
[3] Cochin Univ Sci & Technol, Inter Univ Ctr Studies Kerala Legacy Astron & Mat, Kochi 682022, Kerala, India
[4] Cochin Univ Sci & Technol, Ctr Particle Phys, Kochi 22, Kerala, India
关键词
emergence of space; expansion of universe; expansion law; PROBE WMAP OBSERVATIONS; DARK ENERGY; BLACK-HOLES; THERMODYNAMICS; CONSTRAINTS; EQUATIONS; HORIZONS; GRAVITY; ENTROPY;
D O I
10.1088/1361-6382/ac6a39
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
According to the principle of emergence, the expansion of the Universe can be explained as the emergence of space with the progress of cosmic time. We have analytically solved the equation of emergence proposed by Padmanabhan by assuming the Komar energy density rho + 3P as a function of the Hubble parameter. The resulting model describes the evolution of the Universe, which proceeds towards a final de Sitter state. Model parameters have been extracted using the cosmological observational data. Further, the horizon entropy evolution of the model has been studied. The model predicts a Universe having a transition from a prior decelerated epoch to a late accelerated epoch and reasonably predicts the cosmological constant.
引用
收藏
页数:12
相关论文
共 62 条
[1]   Planck 2015 results XVII. Constraints on primordial non-Gaussianity [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Arrojam, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]  
Ade P.A.R., 2014, Astron. Astrophys., V571
[3]   Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics [J].
Akbar, M ;
Cai, RG .
PHYSICS LETTERS B, 2006, 635 (01) :7-10
[4]  
[Anonymous], 2012, ARXIV12064916
[5]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[6]   GENERALIZED SECOND LAW OF THERMODYNAMICS IN BLACK-HOLE PHYSICS [J].
BEKENSTE.JD .
PHYSICAL REVIEW D, 1974, 9 (12) :3292-3300
[7]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[8]  
Blake C., 2011, MONTH NOT R ASTRON S, V418, P1707, DOI [10.1111/j.1365-2966.2011.19592.x, DOI 10.1111/J.1365-2966.2011.19592.X]
[9]  
Bond JR, 1997, MON NOT R ASTRON SOC, V291, pL33
[10]  
Cai RG, 2005, J HIGH ENERGY PHYS