The Tresse theorem and differential invariants for the nonlinear Schrodinger equation

被引:2
作者
Czyzycki, T. [1 ]
机构
[1] Univ Bialystok, Inst Math, Bialystok, Poland
关键词
D O I
10.1088/1751-8113/40/31/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper by using the Tresse theorem we describe a method of construction of all invariants and the differential invariants for a given Lie group, which means invariants containing derivatives of any order. Some important examples from analysis, geometry and physics are presented. In particular, invariants for the nonlinear Schrodinger equation will be investigated.
引用
收藏
页码:9331 / 9342
页数:12
相关论文
共 13 条
[1]  
Aminov Yu. A., 2002, GEOMETRY SUBMANIFOLD
[2]  
CHEN J, FOUND COMPUT MATH, DOI DOI 10.1007/S10208-005-0206-X
[3]  
FUSHCHICH WI, 1992, ACTA APPL MATH, V28, P69
[4]   Symmetry of the Schrodinger equation with variable potential [J].
Fushchych, W ;
Symenoh, Z ;
Tsyfra, I .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1998, 5 (01) :13-22
[5]  
IBRAGIMOV NH, 2004, ALGA, V1
[6]  
IBRAGIMOV NK, 1983, GROUP TRANSFORMATION
[7]   Differential invariants and group foliation for the complex Monge-Ampere equation [J].
Nutku, Y ;
Sheftel', MB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (01) :137-156
[8]  
Olver PJ., 1986, Applications of Lie groups to differential equations, DOI 10.1007/978-1-4684-0274-2
[9]  
OLVER PJ, 1993, ALGEBRAIC GEOMETRIC
[10]  
Ovsiannikov L. V. E., 1982, Group analysis of differential equations