Accuracy of Dynamic Stall Response for Wind Turbine Airfoils Based On Semi-Empirical and Numerical Methods

被引:3
作者
Rasekh, S. [1 ]
Doust, M. Hosseini [1 ]
Aliabadi, S. Karimian [1 ]
机构
[1] Tarbiat Modares Univ, Dept Aerosp Engn, Tehran, Iran
关键词
Dynamic stall; Wind turbine airfoils; Semi-Empirical model; Numerical method; MODEL;
D O I
10.18869/acadpub.jafm.73.248.28668
中图分类号
O414.1 [热力学];
学科分类号
摘要
The aim of the present study is to investigate the accuracy of two different dynamic stall approaches for wind-turbine airfoils. The first approach is the semi-empirical Leishman-Beddoes model (L-B), and the second is the computational fluid dynamic (CFD) results. National Renewable-Energy Laboratory (NREL) S series airfoils are used, and the simulations are performed in Re=10(6). For both approaches, aerodynamic coefficients are represented and compared to experimental data. Validation data refer to Ohio State University (OSU) experiments, which are for pitch oscillation. Results show that the accuracy of the L-B and CFD methods is dependent on mean angle of attack, reduced frequency and the phase of motion. The semi-empirical model has appropriate accuracy as well as low computational cost while the CFD unsteady simulation could be properly used to predict the drag coefficient.
引用
收藏
页码:1287 / 1296
页数:10
相关论文
共 34 条
  • [1] Numerical analysis of dynamic stall on wind turbine airfoils
    Bekhti, A.
    Maizi, M.
    Guerri, O.
    Laazab, S.
    Bouzidi, S. Cheroudi
    Boumerdassi, K.
    2018 INTERNATIONAL CONFERENCE ON WIND ENERGY AND APPLICATIONS IN ALGERIA (ICWEAA' 2018), 2018,
  • [2] Dynamic stall model for wind turbine airfoils
    Larsen, J. W.
    Nielsen, S. R. K.
    Krenk, S.
    JOURNAL OF FLUIDS AND STRUCTURES, 2007, 23 (07) : 959 - 982
  • [3] Dynamic stall simulation of wind turbine airfoils
    Liu, Xiong
    Liang, Shi
    Chen, Yan
    Zhang, Shi-Qiang
    Chen, Chun
    Gongcheng Lixue/Engineering Mechanics, 2015, 32 (03): : 203 - 211
  • [4] Improved dynamic stall prediction of wind turbine airfoils
    Liu, Xiong
    Lu, Cheng
    Liang, Shi
    Godbole, Ajit
    Chen, Yan
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 1021 - 1026
  • [5] Effect of surge motion on the dynamic stall of floating offshore wind turbine airfoils
    Liu, Yan
    Zhao, Zhenzhou
    Feng, Junxin
    Liu, Yige
    Ali, Kashif
    Liu, Huiwen
    Ma, Yuanzhou
    Wei, Shangshang
    Wang, Dingding
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2024, 70
  • [6] Assessment and Optimization of Dynamic Stall Semi-empirical Model for Pitching Aerofoils
    Enrico Galli
    Gregorio Frassoldati
    Davide Prederi
    Giuseppe Quaranta
    Aerotecnica Missili & Spazio, 2025, 104 (3): : 171 - 186
  • [7] Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modeling
    Liu, Pengyin
    Yu, Guohua
    Zhu, Xiaocheng
    Du, Zhaohui
    RENEWABLE ENERGY, 2014, 69 : 402 - 409
  • [8] Numerical studies on dynamic stall characteristics of a wind turbine airfoil
    Galih Bangga
    Journal of Mechanical Science and Technology, 2019, 33 : 1257 - 1262
  • [9] Numerical studies on dynamic stall characteristics of a wind turbine airfoil
    Bangga, Galih
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (03) : 1257 - 1262
  • [10] Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator
    Li Guoqiang
    Zhang Weiguo
    Jiang Yubiao
    Yang Pengyu
    ENERGY, 2019, 185 : 90 - 101