Bilinear estimates in BMO and the Navier-Stokes equations

被引:220
作者
Kozono, H [1 ]
Taniuchi, Y
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
[2] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1007/s002090000130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the BMO norm of the velocity and the vorticity controls the blow-up phenomena of smooth solutions to the Navier-Stokes equations. Our result is applied to the criterion on uniqueness and regularity of weak solutions in the marginal class. Mathematics Subject Classification (1991):35Q30.
引用
收藏
页码:173 / 194
页数:22
相关论文
共 21 条
[1]  
[Anonymous], HARMONIC ANAL
[2]  
[Anonymous], 1997, ADV DIFF EQUA
[3]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[4]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[5]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247
[6]  
Coifman R., 1997, Wavelets: Calderon-Zygmund and Multilinear Operators
[7]  
COIFMAN R. R., 1978, ASTERISQUE, V57
[8]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[9]   A BOUNDEDNESS CRITERION FOR GENERALIZED CALDERON-ZYGMUND OPERATORS [J].
DAVID, G ;
JOURNE, JL .
ANNALS OF MATHEMATICS, 1984, 120 (02) :371-397
[10]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215