Experimental Study of Microjetting from Triangular Grooves in Laser Shock-loaded Samples

被引:8
作者
de Resseguier, T. [1 ]
Roland, C. [1 ]
Lescoute, E. [2 ]
Sollier, A. [2 ]
Loison, D. [3 ]
Berthe, L. [4 ]
Prudhomme, G. [2 ]
Mercier, P. [2 ]
机构
[1] Univ Poitiers, CNRS, ENSMA, Inst Pprime UPR 3346, F-86961 Futuroscope, France
[2] CEA, DAM, DIF, F-91297 Arpajon, France
[3] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France
[4] ENSAM ParisTech, CNRS, PIMM, 151 Bd Hop, F-75013 Paris, France
来源
SHOCK COMPRESSION OF CONDENSED MATTER - 2015 | 2017年 / 1793卷
关键词
D O I
10.1063/1.4971650
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
When a shock wave interacts with a free surface, geometrical defects such as scratches, pits or grooves can lead to the production of high velocity, similar to mu m-size debris. Because their ballistic properties are a key safety issue for various applications involving high pressure dynamic loading, and because these debris may inhibit surface measurements commonly used in shock physics, this process usually referred to as 'material ejection' or 'microjetting' has motivated extensive research work for many years. Recently, we have started a systematic investigation of microjetting under laser driven shock loading of thin metallic samples with calibrated grooves in their free surface. Transverse shadowgraphy (complemented with Photonic Doppler Velocimetry) provides jet velocities for different metals, various groove angles, over a range of shock pressure, both below and above shock-induced melting. Besides, the short duration of pressure application allows partial sample recovery, which provides original insight into the early stage of jet formation.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
Andriot P., 1981, AIP Conference Proceedings, P505
[2]   EJECTION OF MATERIAL FROM SHOCKED SURFACES [J].
ASAY, JR ;
MIX, LP ;
PERRY, FC .
APPLIED PHYSICS LETTERS, 1976, 29 (05) :284-287
[3]   Hydrodynamic simulations of metal ablation by femtosecond laser irradiation [J].
Colombier, JP ;
Combis, P ;
Bonneau, F ;
Le Harzic, R ;
Audouard, E .
PHYSICAL REVIEW B, 2005, 71 (16)
[4]   Spallation in laser shock-loaded tin below and just above melting on release [J].
de Resseguier, T. ;
Signor, L. ;
Dragon, A. ;
Severin, P. ;
Boustie, M. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
[5]   Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks [J].
de Resseguier, T. ;
Lescoute, E. ;
Sollier, A. ;
Prudhomme, G. ;
Mercier, P. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (04)
[6]   Effects of cryogenic temperature on dynamic fragmentation of laser shock-loaded metal foils [J].
de Resseguier, T. ;
Lescoute, E. ;
Loison, D. ;
Chevalier, J. M. ;
Ducasse, F. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (12)
[7]   Spall fracture: methodological aspects, mechanisms and governing factors [J].
Kanel, G. I. .
INTERNATIONAL JOURNAL OF FRACTURE, 2010, 163 (1-2) :173-191
[8]   Ejection of spalled layers from laser shock-loaded metals [J].
Lescoute, E. ;
De Resseguier, T. ;
Chevalier, J-M. ;
Loison, D. ;
Cuq-Lelandais, J-P. ;
Boustie, M. ;
Breil, J. ;
Maire, P-H. ;
Schurtz, G. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (09)
[9]  
Mabire C, 2000, AIP CONF PROC, V505, P93, DOI 10.1063/1.1303429
[10]  
Mader CL, 1980, LASL Phermex data, VI