A new tool to study real dynamics: The convergence plane

被引:124
作者
Alberto Magrenan, Angel [1 ]
机构
[1] Univ Int La Rioja, Dept TFG TFM, Logrono 26002, La Rioja, Spain
关键词
Real dynamics; Nonlinear equations; Graphical tool; Iterative methods; Basins of attraction; NEWTON METHOD; FAMILY;
D O I
10.1016/j.amc.2014.09.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the author presents a graphical tool that allows to study the real dynamics of iterative methods whose iterations depends on one parameter in an easy and compact way. This tool gives the information as previous tools such as Feigenbaum diagrams and Lyapunov exponents for every initial point. The convergence plane can be used, inter alia, to find the elements of a family that have good convergence properties, to see how the basins of attraction changes along the elements of the family, to study two-point methods such as Secant method or even to study two-parameter families of iterative methods. To show the applicability of the tool an example of the dynamics of the Damped Newton's method applied to a cubic polynomial is presented in this paper. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 20 条
[1]   Different anomalies in a Jarratt family of iterative root-finding methods [J].
Alberto Magrenan, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 :29-38
[2]   On a two-step relaxed Newton-type method [J].
Amat, S. ;
Magrenan, A. A. ;
Romero, N. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) :11341-11357
[3]   Reducing Chaos and Bifurcations in Newton-Type Methods [J].
Amat, S. ;
Busquier, S. ;
Magrenan, A. A. .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[4]   Chaotic dynamics of a third-order Newton-type method [J].
Amat, S. ;
Busquier, S. ;
Plaza, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) :24-32
[5]  
Amat S., 2004, SCI. A Math. Sci, V10, P35
[6]  
[Anonymous], 2008, CONVERGENCE APPL NEW, DOI DOI 10.1007/978-0-387-72743-1
[7]  
Argyros I. K., 1996, J APPR TH APPL, V12, P19
[8]   Weaker conditions for the convergence of Newton's method [J].
Argyros, Ioannis K. ;
Hilout, Said .
JOURNAL OF COMPLEXITY, 2012, 28 (03) :364-387
[9]   CONVERGENCE OF THE RELAXED NEWTON'S METHOD [J].
Argyros, Ioannis Konstantinos ;
Manuel Gutierrez, Jose ;
Alberto Magrenan, Angel ;
Romero, Natalia .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) :137-162
[10]   Chaos in King's iterative family [J].
Cordero, Alicia ;
Garcia-Maimo, Javier ;
Torregrosa, Juan R. ;
Vassileva, Maria P. ;
Vindel, Pura .
APPLIED MATHEMATICS LETTERS, 2013, 26 (08) :842-848