A biased random-key genetic algorithm for the maximum quasi-clique problem

被引:36
作者
Pinto, Bruno Q. [1 ,2 ]
Ribeiro, Celso C. [2 ]
Rosseti, Isabel [2 ]
Plastino, Alexandre [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Triangulo Mineiro, BR-38411104 Uberlandia, MG, Brazil
[2] Univ Fed Fluminense, Inst Comp, BR-24210240 Niteroi, RJ, Brazil
关键词
Metaheuristics; Biased random-key genetic algorithm; Maximum quasi-clique problem; Maximum clique problem; Graph density; PATH-RELINKING; GRASP; TIME;
D O I
10.1016/j.ejor.2018.05.071
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G = (V, E) and a threshold gamma is an element of (0, 1 j, the maximum cardinality quasi-clique problem consists in finding a maximum cardinality subset C. of the vertices in V such that the density of the graph induced in G by C* is greater than or equal to the threshold gamma. This problem is NP-hard, since it admits the maximum clique problem as a special case. It has a number of applications in data mining, e.g. in social networks or phone call graphs. In this work, we propose a biased random-key genetic algorithm for solving the maximum cardinality quasi-clique problem. Two alternative decoders are implemented for the biased random-key genetic algorithm and the corresponding algorithm variants are evaluated. Computational results show that the newly proposed approaches improve upon other existing heuristics for this problem in the literature. All input data for the test instances and all detailed numerical results are available from Mendeley. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:849 / 865
页数:17
相关论文
共 50 条
[31]   A random-key genetic algorithm for the generalized traveling salesman problem [J].
Snyder, Lawrence V. ;
Daskin, Mark S. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 174 (01) :38-53
[32]   Biased random-key genetic algorithms for combinatorial optimization [J].
Goncalves, Jose Fernando ;
Resende, Mauricio G. C. .
JOURNAL OF HEURISTICS, 2011, 17 (05) :487-525
[33]   A Multi-objective Biased Random-Key Genetic Algorithm for Service Technician Routing and Scheduling Problem [J].
Damm, Ricardo de Brito ;
Ronconi, Debora P. .
COMPUTATIONAL LOGISTICS (ICCL 2021), 2021, 13004 :471-486
[34]   A biased random-key genetic algorithm to maximize the number of accepted lightpaths in WDM optical networks [J].
Brandao, Julliany S. ;
Noronha, Thiago F. ;
Ribeiro, Celso C. .
JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (04) :813-835
[35]   Solving the Multiobjective Quasi-clique Problem [J].
dos Santos, Daniela Scherer ;
Klamroth, Kathrin ;
Martins, Pedro ;
Paquete, Luis .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 323 (02) :409-424
[36]   Biased random-key genetic algorithms for combinatorial optimization [J].
José Fernando Gonçalves ;
Mauricio G. C. Resende .
Journal of Heuristics, 2011, 17 :487-525
[37]   A biased random-key genetic algorithm for routing and wavelength assignment under a sliding scheduled traffic model [J].
Bruno Q. Pinto ;
Celso C. Ribeiro ;
Isabel Rosseti ;
Thiago F. Noronha .
Journal of Global Optimization, 2020, 77 :949-973
[38]   Biased Random-Key Genetic Algorithm Applied to the Optimal Reconfiguration of Radial Distribution Systems [J].
Vargas, Rommel ;
Romero, Ruben ;
Franco, John F. .
PROCEEDINGS OF THE 2018 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXHIBITION - LATIN AMERICA (T&D-LA), 2018,
[39]   Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints [J].
Soares, Leonardo Cabral R. ;
Carvalho, Marco Antonio M. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 285 (03) :955-964
[40]   Biased random-key genetic algorithm for the job sequencing and tool switching problem with non-identical parallel machines [J].
Soares, Leonardo C. R. ;
Carvalho, Marco A. M. .
COMPUTERS & OPERATIONS RESEARCH, 2024, 163