A biased random-key genetic algorithm for the maximum quasi-clique problem

被引:36
作者
Pinto, Bruno Q. [1 ,2 ]
Ribeiro, Celso C. [2 ]
Rosseti, Isabel [2 ]
Plastino, Alexandre [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Triangulo Mineiro, BR-38411104 Uberlandia, MG, Brazil
[2] Univ Fed Fluminense, Inst Comp, BR-24210240 Niteroi, RJ, Brazil
关键词
Metaheuristics; Biased random-key genetic algorithm; Maximum quasi-clique problem; Maximum clique problem; Graph density; PATH-RELINKING; GRASP; TIME;
D O I
10.1016/j.ejor.2018.05.071
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G = (V, E) and a threshold gamma is an element of (0, 1 j, the maximum cardinality quasi-clique problem consists in finding a maximum cardinality subset C. of the vertices in V such that the density of the graph induced in G by C* is greater than or equal to the threshold gamma. This problem is NP-hard, since it admits the maximum clique problem as a special case. It has a number of applications in data mining, e.g. in social networks or phone call graphs. In this work, we propose a biased random-key genetic algorithm for solving the maximum cardinality quasi-clique problem. Two alternative decoders are implemented for the biased random-key genetic algorithm and the corresponding algorithm variants are evaluated. Computational results show that the newly proposed approaches improve upon other existing heuristics for this problem in the literature. All input data for the test instances and all detailed numerical results are available from Mendeley. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:849 / 865
页数:17
相关论文
共 50 条
[21]   Biased random-key genetic algorithms with applications in telecommunications [J].
Resende, Mauricio G. C. .
TOP, 2012, 20 (01) :130-153
[22]   A biased random-key genetic algorithm for the two-stage capacitated facility location problem [J].
Biajoli, Fabricio Lacerda ;
Chaves, Antonio Augusto ;
Nogueira Lorena, Luiz Antonio .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 115 :418-426
[23]   Biased random-key genetic algorithms with applications in telecommunications [J].
Mauricio G. C. Resende .
TOP, 2012, 20 :130-153
[24]   A Biased Random-Key Genetic Algorithm for Regression Test Case Prioritization [J].
Carballo, Pablo ;
Perera, Pablo ;
Rama, Santiago ;
Pedemonte, Martin .
2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2018,
[25]   Biased random-key genetic algorithms for the minimum subgraph diameter problem [J].
Dadalto, Arthur Pratti ;
Usberti, Fabio Luiz ;
San Felice, Mario Cesar .
OPTIMIZATION LETTERS, 2024,
[26]   A matheuristic approach for the minimum broadcast time problem using a biased random-key genetic algorithm [J].
Lima, Alfredo ;
Aquino, Andre L. L. ;
Nogueira, Bruno ;
Pinheiro, Rian G. S. .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2024, 31 (01) :246-273
[27]   A biased random-key genetic algorithm for scheduling heterogeneous multi-round systems [J].
Brandao, Julliany S. ;
Noronha, Thiago F. ;
Resende, Mauricio G. C. ;
Ribeiro, Celso C. .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2017, 24 (05) :1061-1077
[28]   Biased random-key genetic algorithms: A review [J].
Londe, Mariana A. ;
Pessoa, Luciana S. ;
Andrade, Carlos E. ;
Resende, Mauricio G. C. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 321 (01) :1-22
[29]   A biased random-key genetic algorithm for OSPF and DEFT routing to minimize network congestion [J].
Reis, Roger ;
Ritt, Marcus ;
Buriol, Luciana S. ;
Resende, Mauricio G. C. .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2011, 18 (03) :401-423
[30]   Biased random-key genetic algorithms for the weighted minimum broadcast time problem [J].
Lima, Alfredo ;
Ochi, Luiz Satoru ;
Nogueira, Bruno ;
Pinheiro, Rian G. S. .
ANNALS OF OPERATIONS RESEARCH, 2025, 349 (03) :1749-1783