Hyperspectral Unmixing Based on Local Collaborative Sparse Regression

被引:71
作者
Zhang, Shaoquan [1 ,2 ]
Li, Jun [1 ,2 ]
Liu, Kai [1 ,2 ]
Deng, Chengzhi [3 ]
Liu, Lin [1 ,2 ,4 ]
Plaza, Antonio [5 ]
机构
[1] Sun Yat Sen Univ, Sch Geog & Planning, Ctr Integrated Geog Informat Anal, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Guangdong, Peoples R China
[3] Nanchang Inst Technol, Dept Informat Engn, Nanchang 330099, Peoples R China
[4] Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA
[5] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10071, Spain
关键词
Hyperspectral imaging; local collaborative sparse regression; sparse unmixing; spectral unmixing; ALGORITHM; EXTRACTION; IMAGES;
D O I
10.1109/LGRS.2016.2527782
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spectral unmixing is an important technique for hyperspectral data exploitation. In order to solve the unmixing problem using a collection of previously available spectral signatures (i.e., a spectral library), sparse unmixing aims at finding the optimal subset of endmembers to represent the pixels in a hyperspectral image. The classic collaborative unmixing globally assumes that all pixels in a hyperspectral scene share the same active set of endmembers. This assumption rarely holds in practice, as endmembers tend to appear localized in spatially homogeneous areas rather than spread over the whole image. To address this limitation, in this letter, we introduce a new strategy to preserve local collaborativity for sparse hyperspectral unmixing. The proposed approach, which is called local collaborative sparse unmixing, considers the fact that endmember signatures generally appear distributed in local spatial regions instead of uniformly distributed throughout the scene. The proposed approach, which includes spatial information in the standard collaborative formulation, has been experimentally validated using both simulated and real hyperspectral data sets.
引用
收藏
页码:631 / 635
页数:5
相关论文
共 27 条
[1]   An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) :681-695
[2]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[3]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[4]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[5]   Spatially Adaptive Hyperspectral Unmixing [J].
Canham, Kelly ;
Schlamm, Ariel ;
Ziemann, Amanda ;
Basener, Bill ;
Messinger, David .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11) :4248-4262
[6]   Hyperspectral Image Classification via Kernel Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :217-231
[7]   Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems [J].
Clark, RN ;
Swayze, GA ;
Livo, KE ;
Kokaly, RF ;
Sutley, SJ ;
Dalton, JB ;
McDougal, RR ;
Gent, CA .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2003, 108 (E12)
[8]  
CLARK RS, 1993, ULTRA-WIDEBAND, SHORT-PULSE ELECTROMAGNETICS, P93
[9]   Enhancing Hyperspectral Image Unmixing With Spatial Correlations [J].
Eches, Olivier ;
Dobigeon, Nicolas ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11) :4239-4247
[10]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318