Characteristics and Source Apportionment of Atmospheric PM2.5 at a Coastal City in Southern Taiwan

被引:47
作者
Lu, Hung-Yi [1 ]
Lin, Sheng-Lun [2 ,3 ]
Mwangi, John Kennedy [1 ]
Wang, Lin-Chi [2 ]
Lin, Hsin-Yi [4 ]
机构
[1] Natl Cheng Kung Univ, Dept Environm Engn, Tainan 70101, Taiwan
[2] Cheng Shiu Univ, Dept Civil Engn & Geomat, Kaohsiung 83347, Taiwan
[3] Cheng Shiu Univ, Super Micro Mass Res & Technol Ctr, Kaohsiung 83347, Taiwan
[4] Chang Jung Christian Univ, Dept Occupat Safety & Hlth, Tainan 71101, Taiwan
关键词
PM2.5; Chemical composition; Chemical mass balance; Source apportionment; Emission controls; FINE PARTICULATE MATTER; CHEMICAL-COMPOSITIONS; AIR-POLLUTION; PM10; RISK; AEROSOL; HEALTH; SITE; SENSITIVITY; PARTICLES;
D O I
10.4209/aaqr.2016.01.0008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine particulate matters (PM2.5) has been identified as one of the major air pollutants in urban areas, which are responsible for the adverse effects on public health and the deterioration of visibility. New PM2.5 air quality standards were promulgated in Taiwan on 14th May 2012, as well as the standard sampling and analytical method for atmospheric PM2.5 (NIEA A205.11C) on 24th April 2012. In this study, the atmospheric levels and characteristics of PM2.5 in Tainan during 2013 were evaluated by measuring the mass concentration of PM2.5 and analyzing the water-soluble ionic, carbon, and metal components. Additionally, a Chemical Mass Balance (CMB) receptor model was used to identify possible sources of PM2.5 and their contributions. Based on results of this study, the current PM2.5 levels in Tainan in spring and winter (41-49 mu g m(-3)) were substantially higher than the yearly average PM2.5 air quality standards (15 mu g m(-3)). According to chemical composition analysis, secondary aerosols (NH4+, NO3-, and SO42-) contributed approximately 50% and 60% of PM2.5 mass in spring and winter respectively; but were responsible about 40% by mass in summer at both Tainan and Xinying stations. From the results of CMB model, the main contribution sources to the PM2.5 in Tainan are traffic emissions (31.5%), ammonium sulfate (25.5%), ammonium nitrate (12.5%), and crustal elements (11%). Consequently, to improve PM2.5 of Tainan City, the priority control pollutants (or sources) are primary PM2.5 (open burning, construction sites and road dust by vehicles), NOx (diesel vehicle emissions), and SOx (fuels).
引用
收藏
页码:1022 / 1034
页数:13
相关论文
共 50 条
  • [41] Development and Application of a New PM2.5 Source Apportionment Approach
    Lang, Jianlei
    Cheng, Shuiyuan
    Wen, Wei
    Liu, Chao
    Wang, Gang
    AEROSOL AND AIR QUALITY RESEARCH, 2017, 17 (01) : 340 - 350
  • [42] The 2013 severe haze over the Southern Hebei, China: PM2.5 composition and source apportionment
    Wei, Zhe
    Wang, Li-Tao
    Chen, Ming-Zhang
    Zheng, Yan
    ATMOSPHERIC POLLUTION RESEARCH, 2014, 5 (04) : 759 - 768
  • [43] Temporal Source Apportionment of PM2.5 Over the Pearl River Delta Region in Southern China
    Chen, Yiang
    Fungl, Jimmy C. H.
    Huang, Yeqi
    Lu, Xingcheng
    Wang, Zhe
    Louie, Peter K. K.
    Chenl, Wanying
    Yu, Chi Wai
    Yu, Rui
    Lau, Alexis K. H.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (14)
  • [44] Particulate Matter (PM2.5) Concentration and Source Apportionment in Lahore
    Lodhi, Arifa
    Ghauri, Badar
    Khan, M. Rafiq
    Rahman, S.
    Shafique, Shoaib
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2009, 20 (10) : 1811 - 1820
  • [45] Source apportionment of PM2.5 in Tangshan, China-Hybrid approaches for primary and secondary species apportionment
    Wen, Wei
    Cheng, Shuiyuan
    Liu, Lei
    Wang, Gang
    Wang, Xiaoqi
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2016, 10 (05)
  • [46] Source Apportionment of PAHs in Airborne Particulates (PM2.5) in Southern Chile
    Bravo-Linares, Claudio
    Ovando-Fuentealba, Luis
    Orellana-Donoso, Sandra
    Villenas-Fernandez, Karla
    Hernandez-Millan, Millaray
    Mudge, Stephen M.
    Paul Pinaud-Mendoza, Jean
    Loyola-Sepulveda, Rodrigo
    POLYCYCLIC AROMATIC COMPOUNDS, 2017, 37 (2-3) : 189 - 202
  • [47] Pollution characteristics and source apportionment of PM2.5 during heavy pollution process in Urumchi City
    Bi, X.-H. (bixh@nankai.edu.cn), 1600, Editorial Board Research of Environmental Sciences (27): : 113 - 119
  • [48] Development of source profiles and their application in source apportionment of PM2.5 in Xiamen, China
    Zhang, Ningning
    Zhuang, Mazhan
    Tian, Jie
    Tian, Pengshan
    Zhang, Jieru
    Wang, Qiyuan
    Zhou, Yaqing
    Huang, Rujin
    Zhu, Chongshu
    Zhang, Xuemin
    Cao, Junji
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2016, 10 (05)
  • [49] Characteristics and Source Apportionment of Metallic Elements in PM2.5 at Urban and Suburban Sites in Beijing: Implication of Emission Reduction
    Li, Miaoling
    Liu, Zirui
    Chen, Jing
    Huang, Xiaojuan
    Liu, Jingyun
    Xie, Yuzhu
    Hu, Bo
    Xu, Zhongjun
    Zhang, Yuanxun
    Wang, Yuesi
    ATMOSPHERE, 2019, 10 (03)
  • [50] Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China
    Wang, Yanan
    Jia, Chenhui
    Tao, Jun
    Zhang, Leiming
    Liang, Xiaoxue
    Ma, Jianmin
    Gao, Hong
    Huang, Tao
    Zhang, Kai
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 573 : 1031 - 1040