Characteristics and Source Apportionment of Atmospheric PM2.5 at a Coastal City in Southern Taiwan

被引:47
作者
Lu, Hung-Yi [1 ]
Lin, Sheng-Lun [2 ,3 ]
Mwangi, John Kennedy [1 ]
Wang, Lin-Chi [2 ]
Lin, Hsin-Yi [4 ]
机构
[1] Natl Cheng Kung Univ, Dept Environm Engn, Tainan 70101, Taiwan
[2] Cheng Shiu Univ, Dept Civil Engn & Geomat, Kaohsiung 83347, Taiwan
[3] Cheng Shiu Univ, Super Micro Mass Res & Technol Ctr, Kaohsiung 83347, Taiwan
[4] Chang Jung Christian Univ, Dept Occupat Safety & Hlth, Tainan 71101, Taiwan
关键词
PM2.5; Chemical composition; Chemical mass balance; Source apportionment; Emission controls; FINE PARTICULATE MATTER; CHEMICAL-COMPOSITIONS; AIR-POLLUTION; PM10; RISK; AEROSOL; HEALTH; SITE; SENSITIVITY; PARTICLES;
D O I
10.4209/aaqr.2016.01.0008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine particulate matters (PM2.5) has been identified as one of the major air pollutants in urban areas, which are responsible for the adverse effects on public health and the deterioration of visibility. New PM2.5 air quality standards were promulgated in Taiwan on 14th May 2012, as well as the standard sampling and analytical method for atmospheric PM2.5 (NIEA A205.11C) on 24th April 2012. In this study, the atmospheric levels and characteristics of PM2.5 in Tainan during 2013 were evaluated by measuring the mass concentration of PM2.5 and analyzing the water-soluble ionic, carbon, and metal components. Additionally, a Chemical Mass Balance (CMB) receptor model was used to identify possible sources of PM2.5 and their contributions. Based on results of this study, the current PM2.5 levels in Tainan in spring and winter (41-49 mu g m(-3)) were substantially higher than the yearly average PM2.5 air quality standards (15 mu g m(-3)). According to chemical composition analysis, secondary aerosols (NH4+, NO3-, and SO42-) contributed approximately 50% and 60% of PM2.5 mass in spring and winter respectively; but were responsible about 40% by mass in summer at both Tainan and Xinying stations. From the results of CMB model, the main contribution sources to the PM2.5 in Tainan are traffic emissions (31.5%), ammonium sulfate (25.5%), ammonium nitrate (12.5%), and crustal elements (11%). Consequently, to improve PM2.5 of Tainan City, the priority control pollutants (or sources) are primary PM2.5 (open burning, construction sites and road dust by vehicles), NOx (diesel vehicle emissions), and SOx (fuels).
引用
收藏
页码:1022 / 1034
页数:13
相关论文
共 50 条
  • [21] Chemical fingerprint and source apportionment of PM2.5 in highly polluted events of southern Taiwan
    Huazhen Shen
    Tsung-mou Yang
    Chun-chung Lu
    Chung-shin Yuan
    Chung-Hsuang Hung
    Chi-tsan Lin
    Chia-wei Lee
    Guohua Jing
    Gongren Hu
    Kuo-cheng Lo
    Environmental Science and Pollution Research, 2020, 27 : 6918 - 6935
  • [22] Source apportionment of ambient PM10 and PM2.5 in Haikou, China
    Fang, Xiaozhen
    Bi, Xiaohui
    Xu, Hong
    Wu, Jianhui
    Zhang, Yufen
    Feng, Yinchang
    ATMOSPHERIC RESEARCH, 2017, 190 : 1 - 9
  • [23] PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment
    Geng, Ningbo
    Wang, Jia
    Xu, Yifei
    Zhang, Wending
    Chen, Chun
    Zhang, Ruiqin
    PARTICUOLOGY, 2013, 11 (01) : 99 - 109
  • [24] Source apportionment of ambient PM2.5 in Santiago, Chile: 1999 and 2004 results
    Jorquera, Hector
    Barraza, Francisco
    SCIENCE OF THE TOTAL ENVIRONMENT, 2012, 435 : 418 - 429
  • [25] Chemical characteristics and source apportionment of PM2.5 in Wuhan, China
    Fan Huang
    Jiabin Zhou
    Nan Chen
    Yuhua Li
    Kuan Li
    Shuiping Wu
    Journal of Atmospheric Chemistry, 2019, 76 : 245 - 262
  • [26] Source apportionment of PM2.5 and visibility in Jinan, China
    Cheng, Mengtian
    Tang, Guiqian
    Lv, Bo
    Li, Xingru
    Wu, Xinrui
    Wang, Yiming
    Wang, Yuesi
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2021, 102 : 207 - 215
  • [27] Characteristics and source apportionment of PM2.5 in Jiaxing, China
    Zhao, Zhipeng
    Lv, Sheng
    Zhang, Yihua
    Zhao, Qianbiao
    Shen, Lin
    Xu, Shi
    Yu, Jianqiang
    Hou, Jingwen
    Jin, Chengyu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (08) : 7497 - 7511
  • [28] PM2.5 Pollution in Xingtai, China: Chemical Characteristics, Source Apportionment, and Emission Control Measures
    Hu, Jun
    Wang, Han
    Zhang, Jingqiao
    Zhang, Meng
    Zhang, Hefeng
    Wang, Shulan
    Chai, Fahe
    ATMOSPHERE, 2019, 10 (03)
  • [29] Characteristics and source apportionment of PM2.5 in Jiaxing, China
    Zhipeng Zhao
    Sheng Lv
    Yihua Zhang
    Qianbiao Zhao
    Lin Shen
    Shi Xu
    Jianqiang Yu
    Jingwen Hou
    Chengyu Jin
    Environmental Science and Pollution Research, 2019, 26 : 7497 - 7511
  • [30] Characteristics of PM2.5 in an Industrial City of Northern China: Mass Concentrations, Chemical Composition, Source Apportionment, and Health Risk Assessment
    Bai, Wenyu
    Zhao, Xueyan
    Yin, Baohui
    Guo, Liyao
    Zhang, Wenge
    Wang, Xinhua
    Yang, Wen
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (09)