Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification

被引:268
|
作者
Ke, Yinghai [1 ]
Quackenbush, Lindi J. [1 ]
Im, Jungho [1 ]
机构
[1] SUNY Syracuse, Coll Environm Sci & Forestry, Dept Environm Resources & Forest Engn, Syracuse, NY 13210 USA
关键词
High spatial resolution multispectral imagery; LIDAR; Object-based classification; Decision tree; Forest classification; DENSITY LIDAR; INDIVIDUAL TREES; VEGETATION; ACCURACY; INTEGRATION; TEXTURE; LEAF;
D O I
10.1016/j.rse.2010.01.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study evaluated the synergistic use of high spatial resolution multispectral imagery (i.e., QuickBird, 2.4 m) and low-posting-density LIDAR data (3 m) for forest species classification using an object-based approach. The integration of QuickBird multispectral imagery and LIDAR data was considered during image segmentation and the subsequent object-based classification. Three segmentation schemes were examined: (1) segmentation based solely on the spectral image layers; (2) segmentation based solely on MAR-derived layers; and (3) segmentation based on both the spectral and LIDAR-derived layers. For each segmentation scheme, objects were generated at twelve different scales in order to determine optimal scale parameters. Six categories of classification metrics were generated for each object based on spectral data alone, LIDAR data alone and the combination of both data sources. Machine learning decision trees were used to build classification rule sets. Quantitative segmentation quality assessment and classification accuracy results showed the integration of spectral and LIDAR data, in both image segmentation and object-based classification, improved the forest classification compared to using either data source independently. Better segmentation quality led to higher classification accuracy. The highest classification accuracy (Kappa 91.6%) was acquired when using both spectral- and LIDAR-derived metrics based on objects segmented from both spectral and LIDAR layers at scale parameter 250, where best segmentation quality was achieved. Optimal scales were analyzed for each segmentation-classification scheme. Statistical analysis of classification accuracies at different scales revealed that there was a range of optimal scales that provided statistically similar accuracy. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1141 / 1154
页数:14
相关论文
共 50 条
  • [11] Object-based classification of residential land use within Accra, Ghana based on QuickBird satellite data
    Stow, D.
    Lopez, A.
    Lippitt, C.
    Hinton, S.
    Weeks, J.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (22) : 5167 - 5173
  • [12] Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data
    Sasaki, Takeshi
    Imanishi, Junichi
    Ioki, Keiko
    Morimoto, Yukihiro
    Kitada, Katsunori
    LANDSCAPE AND ECOLOGICAL ENGINEERING, 2012, 8 (02) : 157 - 171
  • [13] Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data
    Takeshi Sasaki
    Junichi Imanishi
    Keiko Ioki
    Yukihiro Morimoto
    Katsunori Kitada
    Landscape and Ecological Engineering, 2012, 8 : 157 - 171
  • [14] Integration of high-resolution imagery and LiDAR data for object-based classification of urban area
    Mehta, A.
    Dikshit, O.
    Venkataramani, K.
    GEOCARTO INTERNATIONAL, 2014, 29 (04) : 418 - 432
  • [15] Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data
    Onojeghuo, Alex Okiemute
    Onojeghuo, Ajoke Ruth
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 59 : 79 - 91
  • [16] Object-Based Tree Species Classification in Urban Ecosystems Using LiDAR and Hyperspectral Data
    Zhang, Zhongya
    Kazakova, Alexandra
    Moskal, Ludmila Monika
    Styers, Diane M.
    FORESTS, 2016, 7 (06):
  • [17] Object-Based Tree Species Classification Using Airborne Hyperspectral Images and LiDAR Data
    Wu, Yanshuang
    Zhang, Xiaoli
    FORESTS, 2020, 11 (01):
  • [18] Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data
    Liu, Xiaolong
    Bo, Yanchen
    REMOTE SENSING, 2015, 7 (01): : 922 - 950
  • [19] Object-based classification of QuickBird image and low point density LIDAR for tropical trees and shrubs mapping
    Zahidi, Izni
    Yusuf, Badronnisa
    Hamedianfar, Alireza
    Shafri, Helmi Zulhaidi Mohd
    Mohamed, Thamer Ahmed
    EUROPEAN JOURNAL OF REMOTE SENSING, 2015, 48 : 423 - 446
  • [20] A Random Forest Based Method for Urban Object Classification Using Lidar Data and Aerial Imagery
    Gan, Zheng
    Zhong, Liang
    Li, Yunfan
    Guan, Haiyan
    2015 23RD INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2015,