Rolling Bearing Compound Fault Diagnosis Based on Parameter Optimization MCKD and Convolutional Neural Network

被引:55
|
作者
Gao, Shuzhi [1 ]
Shi, Shuo [1 ]
Zhang, Yimin [1 ]
机构
[1] Shenyang Univ Chem Technol, Dept Equipment Reliabil Res, Shenyang 110042, Peoples R China
关键词
Feature extraction; Fault diagnosis; Rolling bearings; Compounds; Convolutional neural networks; Vibrations; Convolution; Compound fault; convolutional neural network (CNN); maximum correlated kurtosis deconvolution (MCKD); multi-strategy cuckoo search algorithm (MSACS); rolling bearing; CORRELATED KURTOSIS DECONVOLUTION; FEATURES;
D O I
10.1109/TIM.2022.3158379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the sake of solving the problem of the difficulty of extracting fault features under the background of noise and accurately identify the state of the bearing, a compound fault diagnosis method of rolling bearing based on parameter optimization maximum correlated kurtosis deconvolution (MCKD) and convolutional neural network (CNN) is proposed. First, the adaptive multi-strategy cuckoo search algorithm (MSACS) is used to iteratively optimize the important parameters of MCKD. Second, the optimized MCKD is used to filter and denoise the rolling bearing fault signal, and the denoised signal is obtained. Finally, the denoised signal is input to the CNN model for training and testing to obtain the classification result of fault diagnosis. Through the test and evaluation of the fault dataset, the proposed method is compared with particle swarm optimization (PSO) parameter optimization method (PSO-MCKD-CNN) and CNN method without noise reduction. At the same time, it is compared with other advanced methods. The experimental results shows that this method improves the diagnostic performance of the neural network, obtains higher diagnostic accuracy, and is more conducive to the detection of compound faults.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Research on rolling bearing compound fault diagnosis based on AMOMCKD and convolutional neural network
    Runfang Hao
    Yunpeng Bai
    Kun Yang
    Yongqiang Cheng
    Shengjun Chang
    Scientific Reports, 15 (1)
  • [2] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [3] Rolling Bearing Fault Diagnosis Based on GWVD and Convolutional Neural Network
    Lv, Xiaoxuan
    Li, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 514 - 523
  • [4] A review on convolutional neural network in rolling bearing fault diagnosis
    Li, Xin
    Ma, Zengqiang
    Yuan, Zonghao
    Mu, Tianming
    Du, Guoxin
    Liang, Yan
    Liu, Jingwen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [5] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Zhang, Xiaochen
    Li, Hanwen
    Meng, Weiying
    Liu, Yaofeng
    Zhou, Peng
    He, Cai
    Zhao, Qingbo
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (10)
  • [6] Fault diagnosis of rolling bearing based on online transfer convolutional neural network
    Xu, Quansheng
    Zhu, Bo
    Huo, Hanbing
    Meng, Zong
    Li, Jimeng
    Fan, Fengjie
    Cao, Lixiao
    APPLIED ACOUSTICS, 2022, 192
  • [7] Rolling Bearing Composite Fault Diagnosis Method Based on Convolutional Neural Network
    Chen, Song
    Guo, Dong-ting
    Chen, Li-ai
    Wang, Da-gui
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (03)
  • [8] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [9] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Xiaochen Zhang
    Hanwen Li
    Weiying Meng
    Yaofeng Liu
    Peng Zhou
    Cai He
    Qingbo Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [10] Intelligent fault diagnosis algorithm of rolling bearing based on optimization algorithm fusion convolutional neural network
    Wang, Qiushi
    Sun, Zhicheng
    Zhu, Yueming
    Song, Chunhe
    Li, Dong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19963 - 19982