Transition from no-ELM response to pellet ELM triggering during pedestal build-up-insights from extended MHD simulations

被引:15
作者
Futatani, S. [1 ]
Cathey, A. [2 ,3 ]
Hoelzl, M. [2 ]
Lang, P. T. [2 ]
Huijsmans, G. T. A. [4 ,5 ]
Dunne, M. [2 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] TUM, Phys Dept, D-85748 Garching, Germany
[4] CEA, IRFM, F-13108 St Paul Les Durance, France
[5] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
fusion; pellet; ELM; JOREK; ASDEX Upgrade; MHD; simulation; INJECTION;
D O I
10.1088/1741-4326/abdfb4
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Pellet edge localized mode (ELM) triggering is a well-established scheme for decreasing the time between two successive ELM crashes below its natural value. Reliable ELM pacing has been demonstrated experimentally in several devices, increasing the ELM frequency considerably. However, it was also shown that the frequency cannot be increased arbitrarily due to a so-called lag-time. During this time, after a preceding natural or triggered ELM crash, neither a natural ELM crash occurs nor is it possible to trigger an ELM crash by pellet injection. For this article, pellet ELM triggering simulations are advanced beyond previous studies in two ways. Firstly, realistic E x B and diamagnetic background flows are included. And secondly, the pellet is injected at different stages of the pedestal build-up. This allows us to recover the lag time for the first time in simulations and investigate it in detail. A series of nonlinear extended MHD simulations is performed to investigate the plasma dynamics resulting from an injection at different time points during the pedestal build-up. The experimentally observed lag-time is qualitatively reproduced. In particular, a sharp transition is observed between the regime where no ELMs can be triggered and the regime where pellet injection causes an ELM crash. Via variations of pellet parameters and injection time, the two regimes are studied and compared in detail, revealing pronounced differences in the nonlinear dynamics. The toroidal mode spectrum is significantly broader when an ELM crash is triggered, enhancing the stochasticity and therefore also the losses of thermal energy along magnetic field lines. In the heat fluxes to the divertor targets, pronounced toroidal asymmetries are observed. In the case of high injection velocities leading to deep penetration, the excitation of core modes like the 2/1 neoclassical tearing mode is also observed.
引用
收藏
页数:26
相关论文
共 36 条
[1]   Non-linear magnetohydrodynamic simulations of edge localised mode triggering via vertical position oscillations in ITER [J].
Artola, F. J. ;
Huijsmans, G. T. A. ;
Hoeizi, M. ;
Beyer, P. ;
Loarte, A. ;
Gribov, Y. .
NUCLEAR FUSION, 2018, 58 (09)
[2]   Reduction of edge localized mode intensity on DIII-D by on-demand triggering with high frequency pellet injection and implications for ITER [J].
Baylor, L. R. ;
Commaux, N. ;
Jernigan, T. C. ;
Meitner, S. J. ;
Combs, S. K. ;
Isler, R. C. ;
Unterberg, E. A. ;
Brooks, N. H. ;
Evans, T. E. ;
Leonard, A. W. ;
Osborne, T. H. ;
Parks, P. B. ;
Snyder, P. B. ;
Strait, E. J. ;
Fenstermacher, M. E. ;
Lasnier, C. J. ;
Moyer, R. A. ;
Loarte, A. ;
Huijsmans, G. T. A. ;
Futatani, S. .
PHYSICS OF PLASMAS, 2013, 20 (08)
[3]   Reduction of Edge-Localized Mode Intensity Using High-Repetition-Rate Pellet Injection in Tokamak H-Mode Plasmas [J].
Baylor, L. R. ;
Commaux, N. ;
Jernigan, T. C. ;
Brooks, N. H. ;
Combs, S. K. ;
Evans, T. E. ;
Fenstermacher, M. E. ;
Isler, R. C. ;
Lasnier, C. J. ;
Meitner, S. J. ;
Moyer, R. A. ;
Osborne, T. H. ;
Parks, P. B. ;
Snyder, P. B. ;
Strait, E. J. ;
Unterberg, E. A. ;
Loarte, A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (24)
[4]   Mechanism of Edge Localized Mode Mitigation by Resonant Magnetic Perturbations [J].
Becoulet, M. ;
Orain, F. ;
Huijsmans, G. T. A. ;
Pamela, S. ;
Cahyna, P. ;
Hoelzl, M. ;
Garbet, X. ;
Franck, E. ;
Sonnendruecker, E. ;
Dif-Pradalier, G. ;
Passeron, C. ;
Latu, G. ;
Morales, J. ;
Nardon, E. ;
Fil, A. ;
Nkonga, B. ;
Ratnani, A. ;
Grandgirard, V. .
PHYSICAL REVIEW LETTERS, 2014, 113 (11)
[5]   A high field side pellet penetration depth scaling derived for ASDEX Upgrade [J].
Belonohy, E. ;
Kardaun, O. J. W. F. ;
Feher, T. ;
Gal, K. ;
Kalvin, S. ;
Kocsis, G. ;
Lackner, K. ;
Lang, P. T. ;
Neuhauser, J. .
NUCLEAR FUSION, 2008, 48 (06)
[6]   Non-linear extended MHD simulations of type-I edge localised mode cycles in ASDEX Upgrade and their underlying triggering mechanism [J].
Cathey, A. ;
Hoelzl, M. ;
Lackner, K. ;
Huijsmans, G. T. A. ;
Dunne, M. G. ;
Wolfrum, E. ;
Pamela, S. J. P. ;
Orain, F. ;
Guenter, S. .
NUCLEAR FUSION, 2020, 60 (12)
[7]   Bezier surfaces and finite elements for MED simulations [J].
Czarny, Olivier ;
Huysmans, Guido .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (16) :7423-7445
[8]  
Diem S.J., P 46 ESP C PLASM PHY
[9]   BOUT++: A framework for parallel plasma fluid simulations [J].
Dudson, B. D. ;
Umansky, M. V. ;
Xu, X. Q. ;
Snyder, P. B. ;
Wilson, H. R. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) :1467-1480
[10]   RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities [J].
Evans, T. E. ;
Fenstermacher, M. E. ;
Moyer, R. A. ;
Osborne, T. H. ;
Watkins, J. G. ;
Gohil, P. ;
Joseph, I. ;
Schaffer, M. J. ;
Baylor, L. R. ;
Becoulet, M. ;
Boedo, J. A. ;
Burrell, K. H. ;
deGrassie, J. S. ;
Finken, K. H. ;
Jernigan, T. ;
Jakubowski, M. W. ;
Lasnier, C. J. ;
Lelmen, M. ;
Leonard, A. W. ;
Lonnroth, J. ;
Nardon, E. ;
Parail, V. ;
Schmitz, O. ;
Unterberg, B. ;
West, W. P. .
NUCLEAR FUSION, 2008, 48 (02)