Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers

被引:194
作者
Cooper, Christopher B. [1 ]
Arutselvan, Kuralamudhan [1 ]
Liu, Ying [1 ]
Armstrong, Daniel [1 ]
Lin, Yiliang [1 ]
Khan, Mohammad Rashed [1 ]
Genzer, Jan [1 ]
Dickey, Michael D. [1 ]
机构
[1] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
关键词
HUMAN-MOTION DETECTION; WIDE DYNAMIC-RANGE; CARBON NANOTUBES; SOFT; PRESSURE; TRANSPARENT; ELECTRONICS; DEVICES; FABRICATION; CONDUCTORS;
D O I
10.1002/adfm.201605630
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Soft and stretchable sensors have the potential to be incorporated into soft robotics and conformal electronics. Liquid metals represent a promising class of materials for creating these sensors because they can undergo large deformations while retaining electrical continuity. Incorporating liquid metal into hollow elastomeric capillaries results in fibers that can integrate with textiles, comply with complex surfaces, and be mass produced at high speeds. Liquid metal is injected into the core of hollow and extremely stretchable elastomeric fibers and the resulting fibers are intertwined into a helix to fabricate capacitive sensors of torsion, strain, and touch. Twisting or elongating the fibers changes the geometry and, thus, the capacitance between the fibers in a predictable way. These sensors offer a simple mechanism to measure torsion up to 800 rad m(-1)-two orders of magnitude higher than current torsion sensors. These intertwined fibers can also sense strain capacitively. In a complementary embodiment, the fibers are injected with different lengths of liquid metal to create sensors capable of distinguishing touch along the length of a small bundle of fibers via self-capacitance. The three capacitive-based modes of sensing described here may enable new sensing applications that employ the unique attributes of stretchable fibers.
引用
收藏
页数:8
相关论文
共 58 条
[1]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[2]   Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene-Rubber Composites [J].
Boland, Conor S. ;
Khan, Umar ;
Backes, Claudia ;
O'Neill, Arlene ;
McCauley, Joe ;
Duane, Shane ;
Shanker, Ravi ;
Liu, Yang ;
Jurewicz, Izabela ;
Dalton, Alan B. ;
Coleman, Jonathan N. .
ACS NANO, 2014, 8 (09) :8819-8830
[3]   Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection [J].
Cai, Le ;
Song, Li ;
Luan, Pingshan ;
Zhang, Qiang ;
Zhang, Nan ;
Gao, Qingqing ;
Zhao, Duan ;
Zhang, Xiao ;
Tu, Min ;
Yang, Feng ;
Zhou, Wenbin ;
Fan, Qingxia ;
Luo, Jun ;
Zhou, Weiya ;
Ajayan, Pulickel M. ;
Xie, Sishen .
SCIENTIFIC REPORTS, 2013, 3
[4]   Smart fabric sensors and e-textile technologies: a review [J].
Castano, Lina M. ;
Flatau, Alison B. .
SMART MATERIALS AND STRUCTURES, 2014, 23 (05)
[5]   A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion [J].
Cheng, Yin ;
Wang, Ranran ;
Sun, Jing ;
Gao, Lian .
ADVANCED MATERIALS, 2015, 27 (45) :7365-+
[6]   A Soft Strain Sensor Based on Ionic and Metal Liquids [J].
Chossat, Jean-Baptiste ;
Park, Yong-Lae ;
Wood, Robert J. ;
Duchaine, Vincent .
IEEE SENSORS JOURNAL, 2013, 13 (09) :3405-3414
[7]   A Highly Elastic, Capacitive Strain Gauge Based on Percolating Nanotube Networks [J].
Cohen, Daniel J. ;
Mitra, Debkishore ;
Peterson, Kevin ;
Maharbiz, Michel M. .
NANO LETTERS, 2012, 12 (04) :1821-1825
[8]   Emerging Applications of Liquid Metals Featuring Surface Oxides [J].
Dickey, Michael D. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (21) :18369-18379
[9]  
Drobny J.G., 2007, HDB THERMOPLASTIC EL
[10]   Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics [J].
Fassler, A. ;
Majidi, C. .
SMART MATERIALS AND STRUCTURES, 2013, 22 (05)