Towards Explainable Meta-learning

被引:2
作者
Woznica, Katarzyna [1 ]
Biecek, Przemyslaw [1 ]
机构
[1] Warsaw Univ Technol, Warsaw, Poland
来源
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021, PT I | 2021年 / 1524卷
关键词
Meta-learning; Explainable artificial intelligence; OpenML;
D O I
10.1007/978-3-030-93736-2_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Meta-learning is a field that aims at discovering how different machine learning algorithms perform on a wide range of predictive tasks. Such knowledge speeds up the hyperparameter tuning or feature engineering. With the use of surrogate models, various aspects of the predictive task such as meta-features, landmarker models, etc., are used to predict expected performance. State-of-the-art approaches focus on searching for the best meta-model but do not explain how these different aspects contribute to its performance. However, to build a new generation of meta-models, we need a deeper understanding of the importance and effect of meta-features on model tunability. This paper proposes techniques developed for eXplainable Artificial Intelligence (XAI) to examine and extract knowledge from black-box surrogate models. To our knowledge, this is the first paper that shows how post-hoc explainability can be used to improve meta-learning.
引用
收藏
页码:505 / 520
页数:16
相关论文
共 50 条
  • [41] Introduction to the Special Issue on Meta-Learning
    Christophe Giraud-Carrier
    Ricardo Vilalta
    Pavel Brazdil
    Machine Learning, 2004, 54 : 187 - 193
  • [42] Leveraging Task Variability in Meta-learning
    Aimen A.
    Ladrecha B.
    Sidheekh S.
    Krishnan N.C.
    SN Computer Science, 4 (5)
  • [43] Online meta-learning for POI recommendation
    Lv, Yao
    Sang, Yu
    Tai, Chong
    Cheng, Wanjun
    Shang, Jedi S.
    Qu, Jianfeng
    Chu, Xiaomin
    Zhang, Ruoqian
    GEOINFORMATICA, 2023, 27 (01) : 61 - 76
  • [44] Meta-learning PINN loss functions
    Psaros, Apostolos F.
    Kawaguchi, Kenji
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 458
  • [45] Dynamic Multimodal Fusion via Meta-Learning Towards Micro-Video Recommendation
    Liu, Han
    Wei, Yinwei
    Liu, Fan
    Wang, Wenjie
    Nie, Liqiang
    Chua, Tat-Seng
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (02)
  • [46] Meta-Learning in Neural Networks: A Survey
    Hospedales, Timothy
    Antoniou, Antreas
    Micaelli, Paul
    Storkey, Amos
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5149 - 5169
  • [47] Noise detection in the meta-learning level
    Garcia, Luis P. F.
    de Carvalho, Andre C. P. L. F.
    Lorena, Ana C.
    NEUROCOMPUTING, 2016, 176 : 14 - 25
  • [48] Multimodality in meta-learning: A comprehensive survey
    Ma, Yao
    Zhao, Shilin
    Wang, Weixiao
    Li, Yaoman
    King, Irwin
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [49] EEML: Ensemble Embedded Meta-Learning
    Li, Geng
    Ren, Boyuan
    Wang, Hongzhi
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2022, 2022, 13724 : 433 - 442
  • [50] Optimizing quantum heuristics with meta-learning
    Wilson, Max
    Stromswold, Rachel
    Wudarski, Filip
    Hadfield, Stuart
    Tubman, Norm M.
    Rieffel, Eleanor G.
    QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)