Exact traveling wave solutions and bifurcations in a nonlinear elastic rod equation

被引:9
作者
Li, Ji-bin [1 ,2 ]
He, Tian-lan [1 ]
机构
[1] Kunming Univ Sci & Technol, Ctr Dynam Syst & Nonlinear Studies, Kunming 650093, Yunnan, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Hangzhou 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
kink wave solution; periodic wave solution; qualitative method; bifurcation; elliptic function;
D O I
10.1007/s10255-008-8139-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exact parametric representations of the traveling wave solutions for a nonlinear elastic rod equation are considered. By using the method of planar dynamical systems, in different parameter regions, the phase portraits of the corresponding traveling wave system are given. Exact explicit kink wave solutions, periodic wave solutions and some unbounded wave solutions are obtained.
引用
收藏
页码:283 / 306
页数:24
相关论文
共 10 条
[1]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[2]   Solitary waves in a quartic nonlinear elastic rod [J].
Duan, WS ;
Zhao, JB .
CHAOS SOLITONS & FRACTALS, 2000, 11 (08) :1265-1267
[3]  
GUCKENHEIMER J, 1983, NONLIEAR OSCILLATION
[4]   Solution of nonlinear wave equation of elastic rod [J].
Guo Peng ;
Zhang Lei ;
Lue Ke-pu ;
Duan Wen-shan .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (01) :61-66
[5]  
Li J., 2007, STUDY SINGULAR NONLI
[6]  
LI JB, 2005, BIFURCATIONS TRAVELL, V15, P3973
[7]   Exact travelling wave solutions in a nonlinear elastic rod equation [J].
Li, Jibin ;
Zhang, Yi .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :504-510
[8]   Perturbation analysis for wave equation of nonlinear elastic rod [J].
Lu Ke-pu ;
Guo Peng ;
Zhang Lei ;
Yi Jin-qiao ;
Duan Wen-shan .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (09) :1233-1238
[9]  
Zhuang W., 1986, Appl. Math. Mech. -Engl. Ed, V7, P615, DOI [10.1007/BF01895973, DOI 10.1007/BF01895973]
[10]  
ZHUANG W, 1988, ACTA MECH SINICA, V20, P58