Diving into the mammalian swamp of respiratory rhythm generation with the bullfrog

被引:18
作者
Baghdadwala, Mufaddal I. [1 ,2 ]
Duchcherer, Maryana [1 ,2 ]
Trask, William M. [1 ,2 ]
Gray, Paul A. [3 ]
Wilson, Richard J. A. [1 ,2 ]
机构
[1] Univ Calgary, Cumming Sch Med, Hotchkiss Brain Inst, 3330 Hosp Dr NW, Calgary, AB T2N 4N1, Canada
[2] Univ Calgary, Cumming Sch Med, Alberta Childrens Hosp Res Inst, Dept Physiol & Pharmacol, 3330 Hosp Dr NW, Calgary, AB T2N 4N1, Canada
[3] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Respiration; Breathing; Ventilation; Rhythm generation; Buccal; Brainstem; Amphibians; VITRO BRAIN-STEM; PRE-BOTZINGER COMPLEX; CENTRAL CO2 CHEMORECEPTION; TINCA-TINCA L; VENTILATORY RHYTHMOGENESIS; NEURAL ORGANIZATION; PATTERN GENERATION; BREATHING PATTERN; LUNG VENTILATION; VENTRAL MEDULLA;
D O I
10.1016/j.resp.2015.09.005
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
All vertebrates produce some form of respiratory rhythm, whether to pump water over gills or ventilate lungs. Yet despite the critical importance of ventilation for survival, the architecture of the respiratory central pattern generator has not been resolved. In frogs and mammals, there is increasing evidence for multiple burst-generating regions in the ventral respiratory group. These regions work together to produce the respiratory rhythm. However, each region appears to be pivotally important to a different phase of the motor act. Regions also exhibit differing rhythmogenic capabilities when isolated and have different CO2 sensitivity and pharmacological profiles. Interestingly, in both frogs and rats the regions with the most robust rhythmogenic capabilities when isolated are located in rhombomeres 7/8. In addition, rhombomeres 4/5 in both clades are critical for controlling phases of the motor pattern most strongly modulated by CO2 (expiration in mammals, and recruitment of lung bursts in frogs). These key signatures may indicate that these cell clusters arose in a common ancestor at least 400 million years ago. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 114 条
[1]   Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation [J].
Abdala, A. P. L. ;
Rybak, I. A. ;
Smith, J. C. ;
Paton, J. F. R. .
JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (14) :3539-3559
[2]  
[Anonymous], EVOLUTION RESP PROCE
[3]   Three brainstem areas involved in respiratory rhythm generation in bullfrogs [J].
Baghdadwala, Mufaddal I. ;
Duchcherer, Maryana ;
Paramonov, Jenny ;
Wilson, Richard J. A. .
JOURNAL OF PHYSIOLOGY-LONDON, 2015, 593 (13) :2941-2954
[4]   THE PYLORIC CENTRAL PATTERN GENERATOR IN CRUSTACEA - A SET OF CONDITIONAL NEURONAL OSCILLATORS [J].
BAL, T ;
NAGY, F ;
MOULINS, M .
JOURNAL OF COMPARATIVE PHYSIOLOGY A-NEUROETHOLOGY SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 1988, 163 (06) :715-727
[5]  
Ballintijn C.M., 1981, EXOGENOUS ENDOGENOUS, V1
[6]   Phenotypic specification of hindbrain rhombomeres and the origins of rhythmic circuits in vertebrates [J].
Bass, AH ;
Baker, R .
BRAIN BEHAVIOR AND EVOLUTION, 1997, 50 :3-16
[7]   INHIBITION OF THE PONTINE KOLLIKER-FUSE NUCLEUS ABOLISHES EUPNEIC INSPIRATORY HYPOGLOSSAL MOTOR DISCHARGE IN RAT [J].
Bautista, T. G. ;
Dutschmann, M. .
NEUROSCIENCE, 2014, 267 :22-29
[8]   Two-oscillator model of ventilatory rhythmogenesis in the frog [J].
Bose, A ;
Lewis, TJ ;
Wilson, RJA .
NEUROCOMPUTING, 2005, 65 :751-757
[9]  
Brainerd EL, 1998, J EXP BIOL, V201, P673
[10]  
BRAINERD EL, 1994, AM ZOOL, V34, P289