Automorphism groups of nilpotent groups and spaces

被引:2
作者
Pickel, PF
Roitberg, J
机构
[1] CUNY Hunter Coll, New York, NY 10021 USA
[2] Polytechn Univ New York, Farmingdale, NY 11735 USA
[3] CUNY, Grad Sch, New York, NY 10036 USA
关键词
D O I
10.1016/S0022-4049(99)00043-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
ii pair of finitely generated, torsion-free nilpotent groups G(1), G(2) is constructed with the properties that G1 and GZ are p-isomorphic for all primes p, yet Aut(G(1)) and Aut(G(2)) are not isomorphic. The example constructed is compared to an analogous example in the homotopy category of simply connected, finite CW-compIexes. (C) 2000 Elsevier Science B.V. All rights reserved. MSC. 20F18; 20F28; 55P10
引用
收藏
页码:307 / 319
页数:13
相关论文
共 10 条
[1]   EQUIVALENCE CLASSES OF HOMOTOPY-ASSOCIATIVE COMULTIPLICATIONS OF FINITE COMPLEXES [J].
ARKOWITZ, M ;
LUPTON, G .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 102 (02) :109-136
[2]   AUTOMORPHISM GROUPS OF NILPOTENT GROUPS [J].
BAUMSLAG, G .
AMERICAN JOURNAL OF MATHEMATICS, 1969, 91 (04) :1003-&
[3]  
BAUMSLAG G, 1971, AMS REGIONAL C SERIE
[4]  
DONALDSON SK, 1983, J DIFFER GEOM, V18, P279
[5]  
Hall P., 1957, CAN MATH C SUMM SEM
[6]  
HILTON P, 1975, N HOLLAND MATH STUDI, V15
[7]  
Milnor J.W., 1958, Symposium Internacional de Topologia AIg, P122
[8]  
PICKEL PF, 1970, THESIS RICE U
[9]   Genus and symmetry in homotopy theory [J].
Roitberg, J .
MATHEMATISCHE ANNALEN, 1996, 305 (02) :381-386
[10]   APPLICATIONS OF MINIMAL SIMPLICIAL GROUPS [J].
WILKERSON, CW .
TOPOLOGY, 1976, 15 (02) :111-130