The Hamilton-Jacobi equation of minimal time control

被引:0
作者
Clarke, FH [1 ]
Nour, C [1 ]
机构
[1] Univ Lyon 1, Inst Girard Desaruges, F-69622 Villeurbanne, France
关键词
minimal time function; viscosity solutions; geodesic trajectories; proximal analysis; monotonicity of trajectories; nonsmooth analysis;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the solutions of the Hamilton-Jacobi equation that arise in connection with minimal time control, in a new global framework. These solutions, for which we establish existence using the minimal time function as a function of two variables, turn out to be closely related to time-geodesic trajectories.
引用
收藏
页码:413 / 436
页数:24
相关论文
共 21 条
[1]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[2]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI, V264
[3]   CONVEXITY PROPERTIES OF THE MINIMUM-TIME FUNCTION [J].
CANNARSA, P ;
SINESTRARI, C .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (03) :273-298
[4]  
CANNARSA P, UNPUB SEMICONCAVE FU
[5]  
Caratheodory C., 1982, Calculus of variations and partial differential equations of the first order
[6]  
Clarke F.H., 1990, CLASSICS APPL MATH, V5
[7]  
Clarke F.H., 1998, GRAD TEXT M, V178
[8]   MEAN-VALUE INEQUALITIES IN HILBERT-SPACE [J].
CLARKE, FH ;
LEDYAEV, YS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (01) :307-324
[9]  
Clarke FH, 1995, J DYN CONTROL SYST, V1, P1, DOI DOI 10.1007/BF02254655
[10]  
Clarke FH, 1983, OPTIMIZATION NONSMOO