Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction?

被引:1137
作者
Evans, JL
Goldfine, ID
Maddux, BA
Grodsky, GM
机构
[1] Med Res Inst, San Francisco, CA 94107 USA
[2] Univ Calif San Francisco, San Francisco, CA 94143 USA
关键词
D O I
10.2337/diabetes.52.1.1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In both type 1 and type 2 diabetes, diabetic complications in target organs arise from chronic elevations of glucose. The pathogenic effect of high glucose, possibly in concert with fatty acids, is mediated to a significant extent via increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and subsequent oxidative stress. ROS and RNS directly oxidize and damage DNA, proteins, and lipids. In addition to their ability to directly inflict damage on macromolecules, ROS and RNS indirectly induce damage to tissues by activating a number of cellular stress-sensitive pathways. These pathways include nuclear factor-kappaB, p38 mitogen-activated protein kinase, NH2-terminal Jun kinases/stress-activated protein kinases, hexosamines, and others. In addition, there is evidence that in type 2 diabetes, the activation of these same pathways by elevations in glucose and free fatty acid (FFA) levels leads to both insulin resistance and impaired insulin secretion. Therefore, we propose here that the hyperglycemia-induced, and possibly FFA-induced, activation of stress pathways plays a key role in the development of not only the late complications in type 1 and type 2 diabetes, but also the insulin resistance and impaired insulin secretion seen in type 2 diabetes.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 108 条
[1]   The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307 [J].
Aguirre, V ;
Uchida, T ;
Yenush, L ;
Davis, R ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :9047-9054
[2]   Cytosolic triglycerides and oxidative stress in central obesity:: the missing link between excessive atherosclerosis, endothelial dysfunction, and β-cell failure? [J].
Bakker, SJL ;
IJzerman, RG ;
Teerlink, T ;
Westerhoff, HV ;
Gans, ROB ;
Heine, RJ .
ATHEROSCLEROSIS, 2000, 148 (01) :17-21
[3]   Mechanisms of disease - Nuclear factor-kappa b - A pivotal transcription factor in chronic inflammatory diseases [J].
Barnes, PJ ;
Larin, M .
NEW ENGLAND JOURNAL OF MEDICINE, 1997, 336 (15) :1066-1071
[4]  
BEGUM M, 2000, AM J PHYSIOL, V278, pC81
[5]   Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets [J].
Benhamou, PY ;
Moriscot, C ;
Richard, MJ ;
Beatrix, O ;
Badet, L ;
Pattou, F ;
Kerr-Conte, J ;
Chroboczek, J ;
Lemarchand, P ;
Halimi, S .
DIABETOLOGIA, 1998, 41 (09) :1093-1100
[6]   Diabetes-associated sustained activation of the transcription factor nuclear factor-κB [J].
Bierhaus, A ;
Schiekofer, S ;
Schwaninger, M ;
Andrassy, M ;
Humpert, PM ;
Chen, J ;
Hong, M ;
Luther, T ;
Henle, T ;
Klöting, I ;
Morcos, M ;
Hofmann, M ;
Tritschler, H ;
Weigle, B ;
Kasper, M ;
Smith, M ;
Perry, G ;
Schmidt, AM ;
Stern, DM ;
Häring, HU ;
Schleicher, E ;
Nawroth, PP .
DIABETES, 2001, 50 (12) :2792-2808
[7]   Turning down insulin signaling [J].
Birnbaum, MJ .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (05) :655-659
[8]   Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress - Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways [J].
Blair, AS ;
Hajduch, E ;
Litherland, GJ ;
Hundal, HS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36293-36299
[9]   MECHANISMS OF FATTY ACID-INDUCED INHIBITION OF GLUCOSE-UPTAKE [J].
BODEN, G ;
CHEN, XH ;
RUIZ, J ;
WHITE, JV ;
ROSSETTI, L .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (06) :2438-2446
[10]   Effects of prolonged glucose infusion on insulin secretion, clearance, and action in normal subjects [J].
Boden, G ;
Ruiz, J ;
Kim, CJ ;
Chen, XH .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1996, 270 (02) :E251-E258