Algebraic methods for many-body systems

被引:0
|
作者
Maino, G [1 ]
机构
[1] ENEA, Dipartimento Innovaz, Div Fis Applicata, I-40129 Bologna, Italy
来源
PHYSICS OF COMPLEX SYSTEMS | 1997年 / 134卷
关键词
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
引用
收藏
页码:637 / 655
页数:19
相关论文
共 50 条
  • [21] ALGEBRAIC APPROXIMATION IN MANY-BODY PERTURBATION-THEORY
    WILSON, S
    SILVER, DM
    PHYSICAL REVIEW A, 1976, 14 (06): : 1949 - 1960
  • [22] SAMPLING METHODS FOR MANY-BODY DYNAMICS
    PERCUS, JK
    YEVICK, GJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (04): : 615 - &
  • [23] Many-body methods at finite temperature
    Vautherin, D
    ADVANCES IN NUCLEAR PHYSICS, VOL 22, 1996, 22 : 123 - 172
  • [24] VARIATIONAL METHODS FOR MANY-BODY PROBLEMS
    ROSENBERG, L
    TOLCHIN, S
    PHYSICAL REVIEW A, 1973, 8 (04) : 1702 - 1709
  • [25] Fate of algebraic many-body localization under driving
    Burau, Heiko
    Heyl, Markus
    De Tomasi, Giuseppe
    PHYSICAL REVIEW B, 2021, 104 (22)
  • [26] μ-symmetry breaking: An algebraic approach to finding mean fields of quantum many-body systems
    Higashikawa, Sho
    Ueda, Masahito
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [27] Probing quantum correlations in many-body systems: a review of scalable methods
    Frerot, Irenee
    Fadel, Matteo
    Lewenstein, Maciej
    REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (11)
  • [28] Convergence of many-body perturbation methods with lattice summations in extended systems
    Sun, JQ
    Bartlett, RJ
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (13) : 5554 - 5563
  • [29] Manipulation of the dynamics of many-body systems via quantum control methods
    Dinerman, Julie
    Santos, Lea F.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [30] Size consistency of tensor network methods for quantum many-body systems
    Wang, Zhen
    Han, Yongjian
    Guo, Guang-Can
    He, Lixin
    PHYSICAL REVIEW B, 2013, 88 (12):