Anomaly detection combining one-class SVMs and particle swarm optimization algorithms

被引:33
|
作者
Tian, Jiang [1 ]
Gu, Hong [1 ]
机构
[1] Dalian Univ Technol, Sch Elect & Informat Engn, Dalian, Peoples R China
关键词
Outlier detection; Particle swarm optimization; Support vector machine; Anomaly detection; One-class classification; NOVELTY DETECTION; SUPPORT; CLASSIFICATION; MACHINE;
D O I
10.1007/s11071-009-9650-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Anomalies are patterns in data that do not conform to a well-defined notion of normal behavior. One-class Support Vector Machines calculate a hyperplane in the feature space to distinguish anomalies, but the false positive rate is always high and parameter selection is a key issue. So, we propose a novel one-class framework for detecting anomalies, which takes the advantages of both boundary movement strategy and the effectiveness of evaluation algorithm on parameters optimization. First, we search the parameters by using a particle swarm optimization algorithm. Each particle suggests a group of parameters, the area under receiver operating characteristic curve is chosen as the fitness of the object function. Second, we improve the original decision function with a boundary movement. After the threshold has been adjusted, the final detection function will bring about a high detection rate with a lower false positive rate. Experimental results on UCI data sets show that the proposed method can achieve better performance than other one class learning schemes.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
  • [21] Network Intrusion Detection by combining one-class classifiers
    Giacinto, G
    Perdisci, R
    Roli, F
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2005, PROCEEDINGS, 2005, 3617 : 58 - 65
  • [22] Using One-Class SVMs and Wavelets for Audio Surveillance
    Rabaoui, Asma
    Davy, Manuel
    Rossignol, Stephane
    Ellouze, Noureddine
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2008, 3 (04) : 763 - 775
  • [23] One-Class SVMs Based Pronunciation Verification Approach
    Shahin, Mostafa
    Ji, Jim X.
    Ahmed, Beena
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2881 - 2886
  • [24] ONE-CLASS SUPPORT VECTOR MACHINES APPROACH TO ANOMALY DETECTION
    Hejazi, Maryamsadat
    Singh, Yashwant Prasad
    APPLIED ARTIFICIAL INTELLIGENCE, 2013, 27 (05) : 351 - 366
  • [25] Latent Feature Decentralization Loss for One-Class Anomaly Detection
    Hong, Eungi
    Choe, Yoonsik
    IEEE ACCESS, 2020, 8 : 165658 - 165669
  • [26] Anomaly detection for medical images based on a one-class classification
    Wei, Qi
    Ren, Yinhao
    Hou, Rui
    Shi, Bibo
    Lo, Joseph Y.
    Carin, Lawrence
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [27] Steganography anomaly detection using simple one-class classification
    Rodriguez, Benjamin M.
    Peterson, Gilbert L.
    Agaian, Sos S.
    MOBILE MULTIMEDIA/IMAGE PROCESSING FOR MILITARY AND SECURITY APPLICATIONS 2007, 2007, 6579
  • [28] Deep Contrastive One-Class Time Series Anomaly Detection
    Wang, Rui
    Liu, Chongwei
    Mou, Xudong
    Gao, Kai
    Guo, Xiaohui
    Liu, Pin
    Wo, Tianyu
    Liu, Xudong
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 694 - 702
  • [29] Anomaly Detection using Clustered Deep One-Class Classification
    Kim, Younghwan
    Kim, Huy Kang
    2020 15TH ASIA JOINT CONFERENCE ON INFORMATION SECURITY (ASIAJCIS 2020), 2020, : 151 - 157
  • [30] GODS: Generalized One-class Discriminative Subspaces for Anomaly Detection
    Wang, Jue
    Cherian, Anoop
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8200 - 8210