Effective precondition technique to solve a full linear system for the fast multipole method

被引:25
作者
Hamada, S [1 ]
Takuma, T
机构
[1] Kyoto Univ, Dept Elect Engn, Kyoto 6068501, Japan
[2] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan
关键词
boundary element methods; fast multipole method (FMM); iterative methods; Laplace equations; precondition;
D O I
10.1109/TMAG.2003.810335
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fast multipole method (FMM) is an O(N) solver of a full linear system appearing in integral equation methods. We propose a precondition technique for the FMM using the Bi-CGSTAB2 method, which employs a nested FMM having intentionally deteriorated precision. This enables us to utilize the global information residing in the system matrix.
引用
收藏
页码:1666 / 1669
页数:4
相关论文
共 10 条
[1]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[2]  
BRONSHTEIN IN, 1997, HDB MATH, P603
[3]   Preconditioned fast adaptive multipole boundary-element method [J].
Buchau, A ;
Rucker, WM .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) :461-464
[4]  
Greengard L., 1997, Acta Numerica, V6, P229, DOI 10.1017/S0962492900002725
[5]   VARIANTS OF BICGSTAB FOR MATRICES WITH COMPLEX SPECTRUM [J].
GUTKNECHT, MH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (05) :1020-1033
[6]  
HAMADA S, 2002, P 1J INT C GAS DISCH, V2, P176
[7]  
HAMADA S, 2001, P 13 COMPUMAG
[9]   An equational object-oriented data model and its data-parallel query language [J].
Nishimura, S ;
Ohori, A ;
Tajima, K .
ACM SIGPLAN NOTICES, 1996, 31 (10) :1-17
[10]   RAPID SOLUTION OF INTEGRAL-EQUATIONS OF CLASSICAL POTENTIAL-THEORY [J].
ROKHLIN, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :187-207