CLASSIFICATION RESULTS FOR EASY QUANTUM GROUPS

被引:34
作者
Banica, Teodor [1 ]
Curran, Stephen [2 ]
Speicher, Roland [3 ]
机构
[1] Cergy Pontoise Univ, Dept Math, F-95000 Cergy Pontoise, France
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
quantum group; noncrossing partition; INTEGRATION;
D O I
10.2140/pjm.2010.247.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the orthogonal quantum groups satisfying the "easiness" assumption axiomatized in our previous paper, with the construction of some new examples and with some partial classification results. The conjectural conclusion is that the easy quantum groups consist of the previously known 14 examples, plus a hypothetical multiparameter "hyperoctahedral series", related to the complex reflection groups H-n(s) = Z(s) sic S-n. We also discuss the general structure and the computation of asymptotic laws of characters for the new quantum groups that we construct.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 34 条
  • [1] Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem
    Aldous, D
    Diaconis, P
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (04) : 413 - 432
  • [2] [Anonymous], 1987, PROC ICM
  • [3] [Anonymous], 2006, LECT COMBINATORICS F, DOI DOI 10.1017/CBO9780511735127
  • [4] [Anonymous], PROBABILISTIC SYMMET
  • [5] BANICA T, 2008, ANN MATH BLAISE PASC, V15, P135, DOI [10.5802/ambp.243, DOI 10.5802/AMBP.243]
  • [6] Quantum permutation groups: A survey
    Banica, Teodor
    Bichon, Julien
    Collins, Benoit
    [J]. NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY, 2007, 78 : 13 - +
  • [7] Integration over quantum permutation groups
    Banica, Teodor
    Collins, Benoit
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (02) : 641 - 657
  • [8] Liberation of orthogonal Lie groups
    Banica, Teodor
    Speicher, Roland
    [J]. ADVANCES IN MATHEMATICS, 2009, 222 (04) : 1461 - 1501
  • [9] Banica T, 2009, J NONCOMMUT GEOM, V3, P327
  • [10] Banica Teodor, 2007, J. Ramanujan Math. Soc., V22, P345