Gonality of non-Gorenstein curves of genus five

被引:4
作者
Feital, Lia [1 ]
Martins, Renato Vidal [2 ]
机构
[1] Univ Fed Vicosa, CCE, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
[2] Univ Fed Minas Gerais, ICEx, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2014年 / 45卷 / 04期
关键词
singular curve; non-Gorenstein curve; Max Noether theorem;
D O I
10.1007/s00574-014-0067-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish sufficient conditions for some curves to be trigonal and derive from them that most of non-Gorenstein curves of genus five are so. Afterwards, we show that the gonality of such a curve ranges from 2 to 5. Gonality is understood within a broader context, i.e., the g (d) (1) may possibly admit a base point and correspond to a torsion free sheaf of rank one instead of a line bundle. This study comes along with a thorough description of possible canonical models and kinds of singularities.
引用
收藏
页码:649 / 670
页数:22
相关论文
共 18 条
[1]  
[Anonymous], 1959, GROUPES ALGEBRIQUES
[2]   One-dimensional almost Gorenstein rings [J].
Barucci, V ;
Froberg, R .
JOURNAL OF ALGEBRA, 1997, 188 (02) :418-442
[3]   Analytically unramified one-dimensional semilocal rings and their value semigroups [J].
Barucci, V ;
D'Anna, M ;
Fröberg, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 147 (03) :215-254
[4]  
BEHNKE K, 1991, COMPOS MATH, V77, P233
[5]  
Buchweitz R.-O., 1980, LECT NOTES MATH, V777, P205, DOI [10.1007/BFb0085884, DOI 10.1007/BFB0085884]
[6]   FREE LINEAR-SYSTEMS ON INTEGRAL GORENSTEIN CURVES [J].
COPPENS, M .
JOURNAL OF ALGEBRA, 1992, 145 (01) :209-218
[7]   DETERMINANTAL EQUATIONS FOR CURVES OF HIGH DEGREE [J].
EISENBUD, D ;
KOH, J ;
STILLMAN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (03) :513-539
[8]   The canonical model of a singular curve [J].
Kleiman, Steven Lawrence ;
Martins, Renato Vidal .
GEOMETRIAE DEDICATA, 2009, 139 (01) :139-166
[9]   CONTANGENT COMPLEX OF A MORPHISM [J].
LICHTENBAUM, S ;
SCHLESSINGER, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 128 (01) :41-+
[10]   Trigonal non-Gorenstein curves [J].
Martins, Renato Vidal .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) :873-882