Boltzmann equation solver adapted to emergent chemical non-equilibrium

被引:6
作者
Birrell, Jeremiah [1 ,2 ]
Wilkening, Jon [3 ,4 ]
Rafelski, Johann [2 ]
机构
[1] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94721 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94721 USA
基金
美国国家科学基金会;
关键词
Relativistic Boltzmann equation; Chemical non-equilibrium; Orthogonal polynomial spectral method; FLUCTUATIONS; SPECTRA; SHARE;
D O I
10.1016/j.jcp.2014.10.056
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow for emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature T(t) and phase space occupation factor gamma(t). In this first paper we address (effectively) massless fermions and derive dynamical equations for T(t) and gamma(t) such that the zeroth order term of the basis alone captures the particle number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to easily represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component (e(+/-)-annihilation). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:896 / 916
页数:21
相关论文
共 26 条
[1]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[2]   RELATIVISTIC RELAXATION-TIME MODEL FOR BOLTZMANN-EQUATION [J].
ANDERSON, JL ;
WITTING, HR .
PHYSICA, 1974, 74 (03) :466-488
[3]  
Birrell J., 2014, ARXIV14061759
[4]   Relic neutrinos: Physically consistent treatment of effective number of neutrinos and neutrino mass [J].
Birrell, Jeremiah ;
Yang, Cheng-Tao ;
Chen, Pisin ;
Rafelski, Johann .
PHYSICAL REVIEW D, 2014, 89 (02)
[5]  
Cercignani C., 2000, The Relativistic Boltzmann Equation: Theory and Applications
[6]   Non-equilibrium corrections to the spectra of massless neutrinos in the early universe [J].
Dolgov, AD ;
Hansen, SH ;
Semikoz, DV .
NUCLEAR PHYSICS B, 1997, 503 (1-2) :426-444
[7]  
Ehlers J., 1973, Proceedings of the Summer School on Relativity, Astrophysics and Cosmology, P1
[8]   Non equilibrium spectra of degenerate relic neutrinos [J].
Esposito, S ;
Miele, G ;
Pastor, S ;
Peloso, M ;
Pisanti, O .
NUCLEAR PHYSICS B, 2000, 590 (03) :539-561
[9]  
Fateman Richard, 2011, SOME EXPT EVALUATION
[10]   Cosmological neutrino background revisited [J].
Gnedin, NY ;
Gnedin, OY .
ASTROPHYSICAL JOURNAL, 1998, 509 (01) :11-15