Inference in regression discontinuity designs under local randomization

被引:64
作者
Cattaneo, Matias D. [1 ,2 ]
Titiunik, Rocio [3 ]
Vazquez-Bare, Gonzalo [1 ]
机构
[1] Univ Michigan, Econ, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Stat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Polit Sci, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
st0435; rdrandinf; rdwinselect; rdsensitivity; rdrbounds; regression discontinuity designs; quasi-experimental techniques; causal inference; randomization inference; finite-sample methods; Fisher's exact p-values; Neyman's repeated sampling approach; CONFIDENCE-INTERVALS; ROBUST;
D O I
10.1177/1536867X1601600205
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We introduce the rdlocrand package, which contains four commands to conduct finite-sample inference in regression discontinuity (RD) designs under a local randomization assumption, following the framework and methods proposed in Cattaneo, Frandsen, and Titiunik (2015, Journal of Causal Inference 3: 1-24) and Cattaneo, Titiunik, and Vazquez-Bare (2016, Working Paper, University of Michigan, http://www-personal.umich.edu/similar to titiunik/papers/ CattaneoTitiunikVazquezBare2015_wp.pdf). Assuming a known assignment mechanism for units close to the RD cutoff, these functions implement a variety of procedures based on randomization inference techniques. First, the rdrandinf command uses randomization methods to conduct point estimation, hypothesis testing, and confidence interval estimation under different assumptions. Second, the rdwinselect command uses finite-sample methods to select a window near the cutoff where the assumption of randomized treatment assignment is most plausible. Third, the rdsensitivity command uses randomization techniques to conduct a sequence of hypothesis tests for different windows around the RD cutoff, which can be used to assess the sensitivity of the methods and to construct confidence intervals by inversion. Finally, the rdrbounds command implements Rosenbaum (2002, Observational Studies [Springer]) sensitivity bounds for the context of RD designs under local randomization. Companion R functions with the same syntax and capabilities are also provided.
引用
收藏
页码:331 / 367
页数:37
相关论文
共 19 条
[1]  
[Anonymous], 2015, PRACTICAL GUIDE REGR
[2]   Optimal Data-Driven Regression Discontinuity Plots [J].
Calonico, Sebastian ;
Cattaneo, Matias D. ;
Titiunik, Rocio .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) :1753-1769
[3]  
Calonico S, 2015, R J, V7, P38
[4]   Robust data-driven inference in the regression-discontinuity design [J].
Calonico, Sebastian ;
Cattaneo, Matias D. ;
Titiunik, Rocio .
STATA JOURNAL, 2014, 14 (04) :909-946
[5]   ROBUST NONPARAMETRIC CONFIDENCE INTERVALS FOR REGRESSION-DISCONTINUITY DESIGNS [J].
Calonico, Sebastian ;
Cattaneo, Matias D. ;
Titiunik, Rocio .
ECONOMETRICA, 2014, 82 (06) :2295-2326
[6]  
Cattaneo M., 2016, WORKING PAPER
[7]   Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate [J].
Cattaneo, Matias D. ;
Frandsen, Brigham R. ;
Titiunik, Rocio .
JOURNAL OF CAUSAL INFERENCE, 2015, 3 (01) :1-24
[8]   Identification and estimation of treatment effects with a regression-discontinuity design [J].
Hahn, JY ;
Todd, P ;
Van der Klaauw, W .
ECONOMETRICA, 2001, 69 (01) :201-209
[9]   Regression discontinuity designs: A guide to practice [J].
Imbens, Guido W. ;
Lemieux, Thomas .
JOURNAL OF ECONOMETRICS, 2008, 142 (02) :615-635
[10]  
Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751