Statistical analysis of microarray data

被引:28
|
作者
Reimers, M [1 ]
机构
[1] NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1080/13556210412331327795
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microarrays promise dynamic snapshots of cell activin but microarray results are unfortunately not straightforward to intepret. This article aims to distill the most useful practical results from the vast body of literature availalable on microarray data analysis. Topics covered include: experimental design issues, normalization, quality control, exploratory analysis, and tests for differential expression. Special attention is paid to the peculiarities of low-level analysis of Affymetrix chips, and the multiple testing problem in determining differential expression. The aim of this article is to provide useful answers to the most common practical issues in microarray data analysis. The main topics are preprocessing (normalization), and detecting differential expression. Subsidiary topics include experimental design, and exploratory analysis. Further discussion is found Lit the author's web page (http://discover.nci.nih.gov --> Notes on Microarray Data Analysis).
引用
收藏
页码:23 / 35
页数:13
相关论文
共 50 条
  • [31] Statistical intelligence: effective analysis of high-density microarray data
    Draghici, S
    DRUG DISCOVERY TODAY, 2002, 7 (11) : S55 - S63
  • [32] A systematic statistical process for microarray data analysis: Countering the limitations in the public data sets
    Lertbantanawong, Jarukit
    Chan, Jonathan H.
    PROCEEDINGS OF THE 2006 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2006, : 414 - +
  • [33] Statistical analysis of microarray data: Identification and classification of yeast cell cycle genes
    Kondrakhin, YV
    Podkolodnaya, OA
    Kochetov, AV
    Erokhin, GN
    Kolchanov, NA
    BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE, 2004, : 331 - 341
  • [34] Statistical analysis of microarray gene expression data from a mouse model of toxoplasmosis
    Shrikant Pawar
    Cheryl D Davis
    Claire A Rinehart
    BMC Bioinformatics, 12
  • [35] A statistical framework for integrating two microarray data sets in differential expression analysis
    Yinglei Lai
    Sarah E Eckenrode
    Jin-Xiong She
    BMC Bioinformatics, 10
  • [36] A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
    Benoît De Hertogh
    Bertrand De Meulder
    Fabrice Berger
    Michael Pierre
    Eric Bareke
    Anthoula Gaigneaux
    Eric Depiereux
    BMC Bioinformatics, 11 (1)
  • [37] A probabilistic framework for microarray data analysis: Fundamental probability models and statistical inference
    Ogunnaike, Babatunde A.
    Gelmi, Claudio A.
    Edwards, Jeremy S.
    JOURNAL OF THEORETICAL BIOLOGY, 2010, 264 (02) : 211 - 222
  • [38] A statistical framework for integrating two microarray data sets in differential expression analysis
    Lai, Yinglei
    Eckenrode, Sarah E.
    She, Jin-Xiong
    BMC BIOINFORMATICS, 2009, 10
  • [39] Statistical analysis of microarray gene expression data from a mouse model of toxoplasmosis
    Pawar, Shrikant
    Davis, Cheryl D.
    Rinehart, Claire A.
    BMC BIOINFORMATICS, 2011, 12
  • [40] A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
    De Hertogh, Benoit
    De Meulder, Bertrand
    Berger, Fabrice
    Pierre, Michael
    Bareke, Eric
    Gaigneaux, Anthoula
    Depiereux, Eric
    BMC BIOINFORMATICS, 2010, 11