Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds

被引:17
作者
Roth, Julien [1 ]
机构
[1] Univ Paris Est Marne la Vallee, LAMA UMR 8050, F-77454 Champs Sur Marne 2, Marne La Vallee, France
关键词
Dirac operator; Killing spinors; Isometric immersions; Gauss and Codazzi equations; X R;
D O I
10.1016/j.geomphys.2010.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give spinorial characterizations of isometrically immersed surfaces into three-dimensional homogeneous manifolds with four-dimensional isometry group in terms of the existence of a particular spinor field. This generalizes works by Friedrich for R-3 and Morel for S-3 and H-3. The main argument is the interpretation of the energy-momentum tensor of such a spinor field as the second fundamental form up to a tensor depending on the structure of the ambient space. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1045 / 1061
页数:17
相关论文
共 18 条
[1]   A Hopf differential for constant mean curvature surfaces in S2 x R and H2 x R [J].
Abresch, U ;
Rosenberg, H .
ACTA MATHEMATICA, 2004, 193 (02) :141-174
[2]   Generalized cylinders in semi-Riemannian and spin geometry [J].
Bär, C ;
Gauduchon, P ;
Moroianu, A .
MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (03) :545-580
[3]  
BAR C, 1998, ANN GLOBAL ANAL GEOM
[4]  
BOURGUIGNON JP, SPINORIAL APPR UNPUB
[5]  
Daniel B, 2007, COMMENT MATH HELV, V82, P87
[6]   ISOMETRIC IMMERSIONS INTO Sn x R AND Hn x R AND APPLICATIONS TO MINIMAL SURFACES [J].
Daniel, Benoit .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6255-6282
[7]   On the spinor representation of surfaces in Euclidean 3-space [J].
Friedrich, T .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) :143-157
[8]  
FRIEDRICH T, 2000, AMS GRADUATE STUDIES, V25
[9]   Spinc geometry of Kahler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds [J].
Hijazi, O. ;
Montiel, S. ;
Urbano, F. .
MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) :821-853
[10]   Dirac operators on hypersurfaces of manifolds with negative scalar curvature [J].
Hijazi, O ;
Montiel, S ;
Roldán, A .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (03) :247-264