Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases

被引:129
作者
Jackson, M. A. [1 ]
Gilding, E. K. [1 ]
Shafee, T. [2 ]
Harris, K. S. [2 ]
Kaas, Q. [1 ]
Poon, S. [2 ]
Yap, K. [1 ]
Jia, H. [1 ]
Guarino, R. [2 ]
Chan, L. Y. [1 ]
Durek, T. [1 ]
Anderson, M. A. [2 ]
Craik, D. J. [1 ]
机构
[1] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[2] La Trobe Univ, Dept Biochem & Genet, La Trobe Inst Mol Sci, Melbourne, Vic 3086, Australia
基金
澳大利亚研究理事会;
关键词
KNOTTED PROTEINS; CYCLOTIDES; BIOSYNTHESIS; LEGUMAIN; FAMILY; CYCLIZATION; ACTIVATION; DEFENSINS; EVOLUTION; VERSATILE;
D O I
10.1038/s41467-018-04669-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Asparaginyl endopeptidases (AEPs) are proteases that have crucial roles in plant defense and seed storage protein maturation. Select plant AEPs, however, do not function as proteases but as transpeptidases (ligases) catalyzing the intra-molecular ligation of peptide termini, which leads to peptide cyclization. These ligase-type AEPs have potential biotechnological applications ranging from in vitro peptide engineering to plant molecular farming, but the structural features enabling these enzymes to catalyze peptide ligation/cyclization rather than proteolysis are currently unknown. Here, we compare the sequences, structures, and functions of diverse plant AEPs by combining molecular modeling, sequence space analysis, and functional testing in planta. We find that changes within the substrate-binding pocket and an adjacent loop, here named the "marker of ligase activity", together play a key role for AEP ligase efficiency. Identification of these structural determinants may facilitate the discovery of more ligase-type AEPs and the engineering of AEPs with tailored catalytic properties.
引用
收藏
页数:12
相关论文
共 53 条
[1]   Structures of Cyanobactin Maturation Enzymes Define a Family of Transamidating Proteases [J].
Agarwal, Vinayak ;
Pierce, Elizabeth ;
McIntosh, John ;
Schmidt, Eric W. ;
Nair, Satish K. .
CHEMISTRY & BIOLOGY, 2012, 19 (11) :1411-1422
[2]   Peptide Macrocyclization by a Bifunctional Endoprotease [J].
Bernath-Levin, Kalia ;
Nelson, Clark ;
Elliott, Alysha G. ;
Jayasena, Achala S. ;
Millar, A. Harvey ;
Craik, David J. ;
Mylne, Joshua S. .
CHEMISTRY & BIOLOGY, 2015, 22 (05) :571-582
[3]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[4]   Domain enhanced lookup time accelerated BLAST [J].
Boratyn, Grzegorz M. ;
Schaeffer, Alejandro A. ;
Agarwala, Richa ;
Altschul, Stephen F. ;
Lipman, David J. ;
Madden, Thomas L. .
BIOLOGY DIRECT, 2012, 7
[5]   TOP-IDP-scale: A new amino acid scale measuring propensity for intrinsic disorder [J].
Campen, Andrew ;
Williams, Ryan M. ;
Brown, Celeste J. ;
Meng, Jingwei ;
Uversky, Vladimir N. ;
Dunker, A. Keith .
PROTEIN AND PEPTIDE LETTERS, 2008, 15 (09) :956-963
[6]   Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: The importance of the cyclic cystine knot [J].
Colgrave, ML ;
Craik, DJ .
BIOCHEMISTRY, 2004, 43 (20) :5965-5975
[7]   Insights into Processing and Cyclization Events Associated with Biosynthesis of the Cyclic Peptide Kalata B1 [J].
Conlan, Brendon F. ;
Colgrave, Michelle L. ;
Gillon, Amanda D. ;
Guarino, Rosemary ;
Craik, David J. ;
Anderso, Marilyn A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (33) :28037-28046
[8]   SUBCELLULAR TARGETING AND BIOSYNTHESIS OF CYCLOTIDES IN PLANT CELLS [J].
Conlan, Brendon F. ;
Gillon, Amanda D. ;
Barbeta, Barbara L. ;
Anderson, Marilyn A. .
AMERICAN JOURNAL OF BOTANY, 2011, 98 (12) :2018-2026
[9]   Cyclotide biosynthesis [J].
Craik, David J. ;
Malik, Uru .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2013, 17 (04) :546-554
[10]   Host-Defense Activities of Cyclotides [J].
Craik, David J. .
TOXINS, 2012, 4 (02) :139-156