UPPER BOUNDS FOR THE COHOMOLOGICAL DIMENSIONS OF FINITELY GENERATED MODULES OVER A COMMUTATIVE NOETHERIAN RING

被引:10
作者
Ghasemi, Ghader [1 ]
Bahmanpour, Kamal [1 ,2 ]
A'zami, Jafar [1 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Math Sci, Dept Math, Ardebil 5619911367, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
cohomological dimension; local cohomology; Noetherian ring; system of parameters; ALGEBRAIC-VARIETIES; ARITHMETIC RANK; MATLIS DUALS; IDEAL;
D O I
10.4064/cm137-2-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian ring, I a proper ideal of R, and M be a finitely generated R-module. We provide bounds for the cohomological dimension of the R-module M with respect to the ideal I in several cases.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 12 条
[1]   Associated primes of local cohomology modules and Matlis duality [J].
Bahmanpour, Kamal ;
Naghipour, Reza .
JOURNAL OF ALGEBRA, 2008, 320 (06) :2632-2641
[2]  
Brodmann M. P., 1998, LOCAL COHOMOLOGY ALG
[3]   Cohomological dimension of certain algebraic varieties [J].
Divaani-Aazar, K ;
Naghipour, R ;
Tousi, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3537-3544
[4]  
FALTINGS G, 1980, J REINE ANGEW MATH, V313, P43
[5]  
Grothendieck A., 1967, Lect. Notes in Math., V41
[6]   COHOMOLOGICAL DIMENSION OF ALGEBRAIC VARIETIES [J].
HARTSHORNE, R .
ANNALS OF MATHEMATICS, 1968, 88 (03) :403-+
[7]  
Hellus M, 2008, P AM MATH SOC, V136, P489
[8]   Matlis duals of top local cohomology modules and the arithmetic rank of an ideal [J].
Hellus, Michael .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (04) :1421-1432
[9]   ON THE VANISHING OF LOCAL COHOMOLOGY MODULES [J].
HUNEKE, C ;
LYUBEZNIK, G .
INVENTIONES MATHEMATICAE, 1990, 102 (01) :73-93
[10]   On the finiteness of Bass numbers of local cohomology modules [J].
Kawasaki, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (11) :3275-3279