Using Order Statistics to Estimate Confidence Intervals for Quantile-Based Risk Measures

被引:1
|
作者
Dowd, Kevin
机构
[1] Pensions Institute, Cass Business School, London
来源
JOURNAL OF DERIVATIVES | 2010年 / 17卷 / 03期
关键词
AVERSION;
D O I
10.3905/jod.2010.17.3.009
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This article shows how to apply the theory of order statistics to estimate confidence intervals for quantile-based risk measures, a class that includes the VaR, expected shortfall., mid coherent, convex, and spectral risk measures. The proposed method can be applied to any parametric or nonparametric loss distribution, has a number of advantages relative to alternative methods of estimating confidence intervals for financial risk measures, and is straightforward to implement
引用
收藏
页码:9 / 14
页数:6
相关论文
共 50 条
  • [21] Calculating nonparametric confidence intervals for quantiles using fractional order statistics
    Hutson, AD
    JOURNAL OF APPLIED STATISTICS, 1999, 26 (03) : 343 - 353
  • [22] Geometric quantile-based measures of multivariate distributional characteristics
    Shin, Ha-Young
    Oh, Hee-Seok
    STATISTICS & PROBABILITY LETTERS, 2025, 219
  • [23] Quantile-based risk sharing with heterogeneous beliefs
    Paul Embrechts
    Haiyan Liu
    Tiantian Mao
    Ruodu Wang
    Mathematical Programming, 2020, 181 : 319 - 347
  • [24] Quantile-based risk sharing with heterogeneous beliefs
    Embrechts, Paul
    Liu, Haiyan
    Mao, Tiantian
    Wang, Ruodu
    MATHEMATICAL PROGRAMMING, 2020, 181 (02) : 319 - 347
  • [25] Quantile-based spatiotemporal risk assessment of exceedances
    Romero, J. L.
    Madrid, A. E.
    Angulo, J. M.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (08) : 2275 - 2291
  • [26] Quantile-based spatiotemporal risk assessment of exceedances
    J. L. Romero
    A. E. Madrid
    J. M. Angulo
    Stochastic Environmental Research and Risk Assessment, 2018, 32 : 2275 - 2291
  • [27] Confidence intervals for N in the exponential order statistics problem
    Finkelstein, M
    Tucker, HG
    Veeh, JA
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (06) : 1415 - 1433
  • [28] A quantile-based study of cumulative residual Tsallis entropy measures
    Sunoj, S. M.
    Krishnan, Aswathy S.
    Sankaran, P. G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 410 - 421
  • [29] Confidence intervals for quantile estimation using Jackknife techniques
    Y. Román-Montoya
    M. Rueda
    A. Arcos
    Computational Statistics, 2008, 23 : 573 - 585