Posterior contraction in sparse generalized linear models

被引:8
|
作者
Jeong, Seonghyun [1 ]
Ghosal, Subhashis [2 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, 50 Yonsei Ro, Seoul 03722, South Korea
[2] North Carolina State Univ, Dept Stat, 5109 SAS Hall,2311 Stinson Dr, Raleigh, NC 27695 USA
关键词
Fractional posterior; Generalized linear model; High-dimensional regression; Posterior contraction rate; Sparsity-inducing prior; CONVERGENCE-RATES; REGRESSION; FRAMEWORK;
D O I
10.1093/biomet/asaa074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study posterior contraction rates in sparse high-dimensional generalized linear models using priors incorporating sparsity. A mixture of a point mass at zero and a continuous distribution is used as the prior distribution on regression coefficients. In addition to the usual posterior, the fractional posterior, which is obtained by applying Bayes theorem with a fractional power of the likelihood, is also considered. The latter allows uniformity in posterior contraction over a larger subset of the parameter space. In our set-up, the link function of the generalized linear model need not be canonical. We show that Bayesian methods achieve convergence properties analogous to lasso-type procedures. Our results can be used to derive posterior contraction rates in many generalized linear models including logistic, Poisson regression and others.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 50 条
  • [41] Generalized linear models
    Neuhaus, John
    McCulloch, Charles
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (05) : 407 - 413
  • [42] Generalized linear models
    McCulloch, CE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) : 1320 - 1324
  • [43] Generalized linear models
    Burzykowski, Tomasz
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Valkenborg, Dirk
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (04) : 604 - 606
  • [44] GENERALIZED LINEAR MODELS
    NELDER, JA
    WEDDERBURN, RW
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1972, 135 (03): : 370 - +
  • [45] Generalized linear models
    Zezula, Ivan
    BIOMETRIC METHODS AND MODELS IN CURRENT SCIENCE AND RESEARCH, 2011, : 39 - 58
  • [46] Generalized sparse MRF appearance models
    Donner, Rene
    Langs, Georg
    Micusik, Branislav
    Bischof, Horst
    IMAGE AND VISION COMPUTING, 2010, 28 (06) : 1031 - 1038
  • [47] Classification by sparse generalized additive models
    Abramovich, Felix
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 2021 - 2041
  • [48] Multiplicative Weight for Sparse Generalized Linear Model
    Cai, Qianlong
    Wang, Ziyiyang
    Xie, Shuting
    Deng, Siting
    2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021), 2021, : 245 - 248
  • [49] GENERALIZED NON-LINEAR SPARSE CLASSIFIER
    Majumdar, A.
    Ward, R. K.
    Aboulnasr, T.
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [50] Sequential Feature Screening for Generalized Linear Models with Sparse Ultra-High Dimensional Data
    Junying Zhang
    Hang Wang
    Riquan Zhang
    Jiajia Zhang
    Journal of Systems Science and Complexity, 2020, 33 : 510 - 526