Posterior contraction in sparse generalized linear models

被引:8
|
作者
Jeong, Seonghyun [1 ]
Ghosal, Subhashis [2 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, 50 Yonsei Ro, Seoul 03722, South Korea
[2] North Carolina State Univ, Dept Stat, 5109 SAS Hall,2311 Stinson Dr, Raleigh, NC 27695 USA
关键词
Fractional posterior; Generalized linear model; High-dimensional regression; Posterior contraction rate; Sparsity-inducing prior; CONVERGENCE-RATES; REGRESSION; FRAMEWORK;
D O I
10.1093/biomet/asaa074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study posterior contraction rates in sparse high-dimensional generalized linear models using priors incorporating sparsity. A mixture of a point mass at zero and a continuous distribution is used as the prior distribution on regression coefficients. In addition to the usual posterior, the fractional posterior, which is obtained by applying Bayes theorem with a fractional power of the likelihood, is also considered. The latter allows uniformity in posterior contraction over a larger subset of the parameter space. In our set-up, the link function of the generalized linear model need not be canonical. We show that Bayesian methods achieve convergence properties analogous to lasso-type procedures. Our results can be used to derive posterior contraction rates in many generalized linear models including logistic, Poisson regression and others.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 50 条
  • [21] Empirical Bayes posterior concentration in sparse high-dimensional linear models
    Martin, Ryan
    Mess, Raymond
    Walker, Stephen G.
    BERNOULLI, 2017, 23 (03) : 1822 - 1847
  • [22] Asymptotic expansion of the posterior density in high dimensional generalized linear models
    Dasgupta, Shibasish
    Khare, Kshitij
    Ghosh, Malay
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 131 : 126 - 148
  • [23] Maximum posterior estimation of random effects in generalized linear mixed models
    Jiang, JM
    Jia, HM
    Chen, HG
    STATISTICA SINICA, 2001, 11 (01) : 97 - 120
  • [24] Necessary and Sufficient Conditions for Posterior Propriety for Generalized Linear Mixed Models
    Rao, Yalin
    Roy, Vivekananda
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2025, 87 (01): : 157 - 190
  • [25] Posterior propriety of an objective prior for generalized hierarchical normal linear models
    Lin, Cong
    Sun, Dongchu
    Song, Chengyuan
    STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (04) : 309 - 326
  • [26] RATE-OPTIMAL POSTERIOR CONTRACTION FOR SPARSE PCA
    Gao, Chao
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2015, 43 (02): : 785 - 818
  • [27] Conditions for posterior contraction in the sparse normal means problem
    van der Pas, S. L.
    Salomond, J. -B.
    Schmidt-Hieber, J.
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 976 - 1000
  • [28] Generalized Sparse Additive Models
    Haris, Asad
    Simon, Noah
    Shojaie, Ali
    Journal of Machine Learning Research, 2022, 23
  • [29] Generalized Sparse Additive Models
    Haris, Asad
    Simon, Noah
    Shojaie, Ali
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [30] SPARSE ESTIMATION OF GENERALIZED LINEAR MODELS (GLM) VIA APPROXIMATED INFORMATION CRITERIA
    Su, Xiaogang
    Fan, Juanjuan
    Levine, Richard A.
    Nunn, Martha E.
    Tsai, Chih-Ling
    STATISTICA SINICA, 2018, 28 (03) : 1561 - 1581