Posterior contraction in sparse generalized linear models

被引:8
作者
Jeong, Seonghyun [1 ]
Ghosal, Subhashis [2 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, 50 Yonsei Ro, Seoul 03722, South Korea
[2] North Carolina State Univ, Dept Stat, 5109 SAS Hall,2311 Stinson Dr, Raleigh, NC 27695 USA
关键词
Fractional posterior; Generalized linear model; High-dimensional regression; Posterior contraction rate; Sparsity-inducing prior; CONVERGENCE-RATES; REGRESSION; FRAMEWORK;
D O I
10.1093/biomet/asaa074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study posterior contraction rates in sparse high-dimensional generalized linear models using priors incorporating sparsity. A mixture of a point mass at zero and a continuous distribution is used as the prior distribution on regression coefficients. In addition to the usual posterior, the fractional posterior, which is obtained by applying Bayes theorem with a fractional power of the likelihood, is also considered. The latter allows uniformity in posterior contraction over a larger subset of the parameter space. In our set-up, the link function of the generalized linear model need not be canonical. We show that Bayesian methods achieve convergence properties analogous to lasso-type procedures. Our results can be used to derive posterior contraction rates in many generalized linear models including logistic, Poisson regression and others.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 27 条
  • [1] Model Selection and Minimax Estimation in Generalized Linear Models
    Abramovich, Felix
    Grinshtein, Vadim
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (06) : 3721 - 3730
  • [2] BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA
    ALBERT, JH
    CHIB, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) : 669 - 679
  • [3] Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models
    Bai, Ray
    Moran, Gemma E.
    Antonelli, Joseph L.
    Chen, Yong
    Boland, Mary R.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 184 - 197
  • [4] Belitser E., 2020, ANN STAT
  • [5] BAYESIAN FRACTIONAL POSTERIORS
    Bhattacharya, Anirban
    Pati, Debdeep
    Yang, Yun
    [J]. ANNALS OF STATISTICS, 2019, 47 (01) : 39 - 66
  • [6] Birge L., 1983, SPECIFYING STAT MODE, P134
  • [7] BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS
    Castillo, Ismael
    Schmidt-Hieber, Johannes
    Van der Vaart, Aad
    [J]. ANNALS OF STATISTICS, 2015, 43 (05) : 1986 - 2018
  • [8] NEEDLES AND STRAW IN A HAYSTACK: POSTERIOR CONCENTRATION FOR POSSIBLY SPARSE SEQUENCES
    Castillo, Ismael
    van der Vaart, Aad
    [J]. ANNALS OF STATISTICS, 2012, 40 (04) : 2069 - 2101
  • [9] Bayesian sparse linear regression with unknown symmetric error
    Chae, Minwoo
    Lin, Lizhen
    Dunson, David B.
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (03) : 621 - 653
  • [10] The Hastings algorithm at fifty
    Dunson, D. B.
    Johndrow, J. E.
    [J]. BIOMETRIKA, 2020, 107 (01) : 1 - 23