Efficient arithmetic in optimal extension fields using simultaneous multiplication

被引:0
作者
Lee, MK [1 ]
Park, K [1 ]
机构
[1] Seoul Natl Univ, Sch Engn & Comp Sci, Seoul 151742, South Korea
关键词
cryptography; elliptic curve; optimal extension field; finite field;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A new algorithm for efficient arithmetic in an optimal extension field is proposed. The new algorithm improves the speeds of multiplication, squaring, and inversion by performing two subfield multiplications simultaneously within a single integer multiplication instruction of a CPU. Our algorithm is used to improve throughputs of elliptic curve operations.
引用
收藏
页码:1316 / 1321
页数:6
相关论文
共 15 条
  • [1] AOKI K, 2001, LNCS, V2200, P235
  • [2] Bailey DV, 1998, LECT NOTES COMPUT SC, V1462, P472, DOI 10.1007/BFb0055748
  • [3] Bailey DV, 2001, J CRYPTOL, V14, P153, DOI 10.1007/s00145-001-0012
  • [4] Coron JS, 1999, LECT NOTES COMPUT SC, V1717, P292
  • [5] A FAST ALGORITHM FOR COMPUTING MULTIPLICATIVE INVERSES IN GF(2M) USING NORMAL BASES
    ITOH, T
    TSUJII, S
    [J]. INFORMATION AND COMPUTATION, 1988, 78 (03) : 171 - 177
  • [6] Izu T., 2002, Public Key Cryptography. 4th International Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2002. Proceedings (Lecture Notes in Computer Science Vol.2274), P280
  • [7] Knuth D. E., 2014, Seminumerical algorithms, V2
  • [8] Kobayashi T, 1999, LECT NOTES COMPUT SC, V1592, P176
  • [9] Kobayashi T, 2000, IEICE T FUND ELECTR, VE83A, P679
  • [10] KOBLITZ N, 1987, MATH COMPUT, V48, P203, DOI 10.1090/S0025-5718-1987-0866109-5