Energy transport in semiconductor devices

被引:11
作者
Juengel, Ansgar [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
energy-transport equations; semiconductors; existence analysis; weak sequential stability; finite-element approximation; NUMERICAL-SIMULATION; ITERATIVE METHOD; MODEL; DIFFUSION; EQUATIONS; SYSTEM; DISCRETIZATION; EXISTENCE; BALANCE; SCHEME;
D O I
10.1080/13873951003679017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The modelling, analysis and numerical approximation of energy-transport models for semiconductor devices are reviewed. The derivation of the partial differential equations from the semiconductor Boltzmann equation is sketched. Furthermore, the main ideas for the analytical treatment of the equations, employing thermodynamic principles, are given. A new result is the proof of the weak sequential stability of approximate solutions to some time-dependent energy-transport equations with physical transport coefficients. The discretization of the stationary model using mixed finite elements is explained, and some numerical results in two and three space dimensions are presented. Finally, energy-transport models with lattice heating or quantum corrections are reviewed.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
[21]   Numerical analysis of steady-state and transient charge transport in organic semiconductor devices [J].
Evelyne Knapp ;
Beat Ruhstaller .
Optical and Quantum Electronics, 2011, 42 :667-677
[22]   Numerical analysis of steady-state and transient charge transport in organic semiconductor devices [J].
Knapp, Evelyne ;
Ruhstaller, Beat .
OPTICAL AND QUANTUM ELECTRONICS, 2011, 42 (11-13) :667-677
[23]   Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization [J].
Sneyd, Alexander J. ;
Fukui, Tomoya ;
Palecek, David ;
Prodhan, Suryoday ;
Wagner, Isabella ;
Zhang, Yifan ;
Sung, Jooyoung ;
Collins, Sean M. ;
Slater, Thomas J. A. ;
Andaji-Garmaroudi, Zahra ;
MacFarlane, Liam R. ;
Garcia-Hernandez, J. Diego ;
Wang, Linjun ;
Whittell, George R. ;
Hodgkiss, Justin M. ;
Chen, Kai ;
Beljonne, David ;
Manners, Ian ;
Friend, Richard H. ;
Rao, Akshay .
SCIENCE ADVANCES, 2021, 7 (32)
[24]   A review of hydrodynamic and energy-transport models for semiconductor device simulation [J].
Grasser, T ;
Tang, TW ;
Kosina, H ;
Selberherr, S .
PROCEEDINGS OF THE IEEE, 2003, 91 (02) :251-274
[25]   Noise and diffusion of hot carriers in semiconductor materials and devices [J].
Nougier, J. P. ;
Varani, L. .
2011 21ST INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2011, :1-8
[26]   Effect of specularity parameter and convective coefficient on heat transport in semiconductor devices based on mesoscopic method [J].
Zobiri, Oussama ;
Atia, Abdelmalek ;
Arici, Muesluem .
PHYSICA B-CONDENSED MATTER, 2023, 670
[27]   Understanding Ionic Transport in Polypyrrole/Nanocellulose Composite Energy Storage Devices [J].
Srivastav, Shruti ;
Tammela, Petter ;
Brandell, Daniel ;
Sojdin, Martin .
ELECTROCHIMICA ACTA, 2015, 182 :1145-1152
[28]   Electron vortices in semiconductor devices [J].
Mohseni, K ;
Shakouri, A ;
Ram, RJ .
2000 INTERNATIONAL CONFERENCE ON MODELING AND SIMULATION OF MICROSYSTEMS, TECHNICAL PROCEEDINGS, 2000, :453-456
[29]   A simplified quantum energy-transport model for semiconductors [J].
Juengel, Ansgar ;
Milisic, Josipa-Pina .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) :1033-1046
[30]   Numerical Schemes for Semiconductors Energy-Transport Models [J].
Bessemoulin-Chatard, Marianne ;
Chainais-Hillairet, Claire ;
Mathis, Helene .
FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 :75-90