Upper bounds for Lq norms of Dirichlet polynomials with small q

被引:4
作者
Heap, Winston [1 ]
机构
[1] UCL, Dept Math, 25 Gordon St, London WC1H, England
基金
欧洲研究理事会;
关键词
Dirichlet polynomial; Norms; Riemann zeta function; Moments; RIEMANN ZETA-FUNCTION;
D O I
10.1016/j.jfa.2018.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve on previous upper bounds for the qth norm of the partial sums of the Riemann zeta function on the half line when 0 < q <= 1. In particular, we show that the 1-norm is bounded above by (log N)(1/4)(log log N)(1/4) . (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:2473 / 2496
页数:24
相关论文
共 15 条
  • [1] [Anonymous], 1958, PACIFIC J MATH
  • [2] Bondarenko A., HARDY SPACES DIRICHL
  • [3] An inequality of Hardy-Littlewood type for Dirichlet polynomials
    Bondarenko, Andriy
    Heap, Winston
    Seip, Kristian
    [J]. JOURNAL OF NUMBER THEORY, 2015, 150 : 191 - 205
  • [4] Pseudomoments of the Riemann zeta-function and pseudomagic squares
    Conrey, B
    Gamburd, A
    [J]. JOURNAL OF NUMBER THEORY, 2006, 117 (02) : 263 - 278
  • [5] Davenport H, 1980, Multiplicative number theory, V2nd
  • [6] Gonek SM, 2007, DUKE MATH J, V136, P507
  • [7] Harper A., MOMENTS RANDOM MULTI
  • [8] Harper Adam., Sharp conditional bounds for moments of the Riemann zeta function
  • [9] Hildebrand A., 1993, J THEOR NOMBRES BORD, V5, P411
  • [10] Iwaniec H., 2004, Analytic Number Theory, V53