Constructions and uses of incomplete pairwise balanced designs

被引:1
作者
Dukes, Peter J. [1 ]
Lamken, Esther R. [2 ]
机构
[1] Univ Victoria, Math & Stat, Victoria, BC, Canada
[2] 773 Colby St, San Francisco, CA 94134 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Block design; Group divisible design; Pairwise balanced design; Resolvable design; Orthogonal latin square; Incomplete design; Subdesign; GROUP-DIVISIBLE DESIGNS; BLOCK SIZE 4; GROUP-TYPE G(U)M(1); ASYMPTOTIC EXISTENCE; TRIPLE-SYSTEMS; LATIN SQUARES; DECOMPOSITIONS;
D O I
10.1007/s10623-019-00645-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give explicit constructions for incomplete pairwise balanced designs IPBD((v; w), K), or, equivalently, edge-decompositions of a difference of two cliques Kv\Kw\ into cliques whose sizes belong to the set K. Our constructions produce such designs whenever v and w satisfy the usual divisibility conditions, have ratio v / w bounded away from the smallest value in K minus one, say v/w>k-1+epsilon, for k=min K and epsilon>0, and are sufficiently large (depending on K and epsilon. As a consequence, some new results are obtained on many related designs, including class-uniformly resolvable designs, incomplete mutually orthogonal latin squares, and group divisible designs. We also include several other applications that illustrate the power of using IPBDs as 'templates'.
引用
收藏
页码:2729 / 2751
页数:23
相关论文
共 40 条
[1]   Edge-decompositions of graphs with high minimum degree [J].
Barber, Ben ;
Kuehn, Daniela ;
Lo, Allan ;
Osthus, Deryk .
ADVANCES IN MATHEMATICS, 2016, 288 :337-385
[2]   A COMMENT ON THE APPROXIMATION OF THE NUMBER OF ORTHAGONAL LATIN SQUARES USING THE SIEVE METHOD [J].
BETH, T .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1983, 53 :284-288
[3]   OPTIMAL PACKINGS OF K4S INTO A KN [J].
BROUWER, AE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 26 (03) :278-297
[4]   The Asymptotic Existence of Resolvable Group Divisible Designs [J].
Chan, Justin H. ;
Dukes, Peter J. ;
Lamken, Esther R. ;
Ling, Alan C. H. .
JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (03) :112-126
[5]  
Chang K.I, 1976, THESIS
[6]   Covering and packing for pairs [J].
Chee, Yeow Meng ;
Colbourn, Charles J. ;
Ling, Alan C. H. ;
Wilson, Richard M. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) :1440-1449
[7]  
Chee YM, 1997, J COMB MATH COMB COM, V23, P121
[8]  
Chowla S., 1960, CAN J MATH, V12, P204
[9]  
Colbourn C, 1996, J COMB THEORY A, V73, P229, DOI 10.1016/S0097-3165(96)80004-5
[10]  
Colbourn C.J., 1999, OX MATH M