Optimized GPU-Accelerated Framework for X-ray Rendering Using k-space Volume Reconstruction

被引:2
|
作者
Abdellah, Marwan [1 ]
Amer, Yassin [1 ]
Eldeib, Ayman [1 ]
机构
[1] Cairo Univ, Syst Biomed Engn Dept, Fac Engn, Cairo Univ St, Giza, Egypt
来源
XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016 | 2016年 / 57卷
关键词
X-ray volume rendering; k-space volume reconstruction; GPU-based rendering; CUDA/OpenGL interoperability;
D O I
10.1007/978-3-319-32703-7_73
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
X-ray rendering is recognized to be an important visualization technique in several scientific and engineering domains. It is capable of generating digital radiographs of volumetric data in the spatial domain using the X-ray transform with O(N-3) complexity. Alternatively, these radiographs can be reconstructed in the k-space in O(N(2)logN). This paper presents the architecture of an optimized X-ray volume rendering framework based on the Fourier slice theorem. The framework exploits the modern designs of Graphics Processing Units (GPUs). The rendering pipeline is designed to run entirely on the GPUs relying on the Compute Unified Device Architecture (CUDA) technology for computing all the data-parallel kernels and OpenGL for executing complementary geometrical operations. The interoperability between CUDA and OpenGL operations is addressed to optimize the workflow. The benchmarking results show that our framework is capable of rendering an X-ray projection of size 512(2) in 0.5 milli-seconds using a GeForce GTX 970 GPU.
引用
收藏
页码:372 / 377
页数:6
相关论文
共 50 条
  • [21] Fast Three-Dimensional Inner Volume Excitations Using Parallel Transmission and Optimized k-Space Trajectories
    Davids, Mathias
    Schad, Lothar R.
    Wald, Lawrence L.
    Guerin, Bastien
    MAGNETIC RESONANCE IN MEDICINE, 2016, 76 (04) : 1170 - 1182
  • [22] GPU-BASED VOLUME RECONSTRUCTION FROM VERY FEW ARBITRARILY ALIGNED X-RAY IMAGES
    Gross, Daniel
    Heil, Ulrich
    Schulze, Ralf
    Schoemer, Elmar
    Schwanecke, Ulrich
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06): : 4204 - 4221
  • [23] Accelerated X-Ray Diffraction (Tensor) Tomography Simulation Using OptiX GPU Ray-Tracing Engine
    Ulseth, Joseph
    Zhu, Zheyuan
    Sun, Yangyang
    Pang, Shuo
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (12) : 2347 - 2354
  • [24] GPU-Accelerated Iterative 3D CT Reconstruction Using Exact Ray-Tracing Method for Both Projection and Backprojection
    Van-Giang Nguyen
    Jeong, Jieun
    Lee, Soo-Jin
    2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [25] Surfing the optimization space of a multiple-GPU parallel implementation of a X-ray tomography reconstruction algorithm
    Garcia Blas, Javier
    Abella, Monica
    Isaila, Florin
    Carretero, Jesus
    Desco, Manuel
    JOURNAL OF SYSTEMS AND SOFTWARE, 2014, 95 : 166 - 175
  • [26] CE-MRA with elliptical centric k-space order of the carotid arteries in comparison to selective x-ray angiography
    Fellner, FA
    Wutke, R
    Fellner, C
    Janka, R
    Lang, W
    Bautz, WA
    RADIOLOGY, 2001, 221 : 298 - 298
  • [27] Volume Prediction of Extended Latissimus Dorsi Musculocutaneous Flap for Breast Reconstruction Using a Computed Tomography Volume-Rendering Technique with an X-ray Contrast Thread Marking
    Takako Komiya
    Hiroshi Kaise
    Yosuke Ojima
    Nanako Ayabe
    Daisuke Kato
    Mizuyo Kojima
    Takashi Ishikawa
    Hajime Matsumura
    Aesthetic Plastic Surgery, 2023, 47 : 1335 - 1342
  • [28] Volume Prediction of Extended Latissimus Dorsi Musculocutaneous Flap for Breast Reconstruction Using a Computed Tomography Volume-Rendering Technique with an X-ray Contrast Thread Marking
    Komiya, Takako
    Kaise, Hiroshi
    Ojima, Yosuke
    Ayabe, Nanako
    Kato, Daisuke
    Kojima, Mizuyo
    Ishikawa, Takashi
    Matsumura, Hajime
    AESTHETIC PLASTIC SURGERY, 2023, 47 (04) : 1335 - 1342
  • [29] Low-Dose Real-Time Region-Of-Interest X-Ray Fluoroscopic Imaging with a GPU-Accelerated Spatially Different Bilateral Filtering
    Chung, H.
    Lee, J.
    Pua, R.
    Jung, W.
    Cho, S.
    MEDICAL PHYSICS, 2014, 41 (06) : 138 - 138
  • [30] Hand-held GPU accelerated device for multiclass classification of X-ray images using CNN model
    Satheeshkumar, K. G.
    Arunachalam, V.
    Deepika, S.
    MICROPROCESSORS AND MICROSYSTEMS, 2024, 106