A modified stochastic Gompertz model for tumour cell growth

被引:21
|
作者
Lo, C. F. [1 ]
机构
[1] Chinese Univ Hong Kong, Inst Theoret Phys, Dept Phys, Hong Kong, Hong Kong, Peoples R China
关键词
bounded random process; Fokker-Planck equation; Lie-algebraic method; FOKKER-PLANCK EQUATIONS; FACTORS IN-DIFFUSION; DRIFT TERMS; LOGARITHMIC DIFFUSION; SYMMETRIES;
D O I
10.1080/17486700802545543
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based upon the deterministic Gompertz law of cell growth, we have proposed a stochastic model of tumour cell growth, in which the size of the tumour cells is bounded. The model takes account of both cell fission (which is an 'action at a distance' effect) and mortality too. Accordingly, the density function of the size of the tumour cells obeys a functional Fokker-Planck Equation (FPE) associated with the bounded stochastic process. We apply the Lie-algebraic method to derive the exact analytical solution via an iterative approach. It is found that the density function exhibits an interesting kink-like structure generated by cell fission as time evolves.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 50 条
  • [21] Stochastic nonautonomous Gompertz model with Lévy jumps
    Min Zhu
    Junping Li
    Xiaoxia Yang
    Advances in Difference Equations, 2016
  • [22] Probabilistic Gompertz model of irreversible growth
    D. C. Bardos
    Bulletin of Mathematical Biology, 2005, 67 : 529 - 545
  • [23] Probabilistic Gompertz model of irreversible growth
    Bardos, DC
    BULLETIN OF MATHEMATICAL BIOLOGY, 2005, 67 (03) : 529 - 545
  • [24] Modeling seasonal growth of fish using modified Gompertz model with sine wave function
    Singhi, N. Okendro
    Paul, Amrit Kumar
    Singh, N. Gopimohon
    Singh, Pal
    Alam, M. D. Wasi
    INDIAN JOURNAL OF ANIMAL SCIENCES, 2011, 81 (06): : 648 - 650
  • [25] The Gompertz type stochastic growth law and a tree diameter distribution
    Rupsys, Petras
    Petrauskas, Edmundas
    Mazeika, Juozapas
    Deltuvas, Romualdas
    BALTIC FORESTRY, 2007, 13 (02) : 197 - 206
  • [26] Using the Gompertz Reliability Growth Model to Model Prognostics Growth and Maturity
    Rice, Roy E.
    MILITARY OPERATIONS RESEARCH, 2011, 16 (01): : 57 - 64
  • [27] Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model
    Chatterjee, Tanaya
    Chatterjee, Barun K.
    Majumdar, Dipanwita
    Chakrabarti, Pinak
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2015, 1850 (02): : 299 - 306
  • [28] A stochastic Gompertz model with logarithmic therapy functions: Parameters estimation
    Moummou, El Kettani
    Gutierrez, R.
    Gutierrez-Sanchez, R.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3729 - 3739
  • [29] Statistical Ensemble Theory of Gompertz Growth Model
    Yamano, Takuya
    ENTROPY, 2009, 11 (04) : 807 - 819
  • [30] Stochastic simulation of benign avascular tumour growth using the Potts model
    Stott, EL
    Britton, NF
    Glazier, JA
    Zajac, M
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (5-6) : 183 - 198