On solutions of linear equations with polynomial coefficients

被引:2
作者
Adamus, Janusz [1 ]
Seyedinejad, Hadi [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
arc-analytic function; Nash regulous function; semialgebraic geometry; ARC-ANALYTIC FUNCTIONS;
D O I
10.4064/ap171122-29-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a linear functional equation with polynomial coefficients need not admit an arc-analytic solution even if it admits a continuous semialgebraic one. We also show that such an equation need not admit a Nash regulous solution even if it admits an arc-analytic one.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 10 条
[1]   Extensions of arc-analytic functions [J].
Adamus, Janusz ;
Seyedinejad, Hadi .
MATHEMATISCHE ANNALEN, 2018, 371 (1-2) :685-693
[2]   A proof of Kurdyka's conjecture on arc-analytic functions [J].
Adamus, Janusz ;
Seyedinejad, Hadi .
MATHEMATISCHE ANNALEN, 2017, 369 (1-2) :387-395
[3]   ARC-ANALYTIC FUNCTIONS [J].
BIERSTONE, E ;
MILMAN, PD .
INVENTIONES MATHEMATICAE, 1990, 101 (02) :411-424
[4]  
Cartan H., 1957, Bulletin de la Societe Mathematique de France, V85, P77
[5]  
Fefferman C., 2013, Dev. Math., V28, P233
[6]   Regulous functions [J].
Fichou, Goulwen ;
Huisman, Johannes ;
Mangolte, Frederic ;
Monnier, Jean-Philippe .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 718 :103-151
[7]  
Kollár J, 2015, MATH Z, V279, P85, DOI 10.1007/s00209-014-1358-7
[8]   Nash regulous functions [J].
Kucharz, Wojciech .
ANNALES POLONICI MATHEMATICI, 2017, 119 (03) :275-289
[9]   Linear equations on real algebraic surfaces [J].
Kucharz, Wojciech ;
Kurdyka, Krzysztof .
MANUSCRIPTA MATHEMATICA, 2017, 154 (3-4) :285-296
[10]  
Seyedinejad H., 2017, ARXIV170408965V1