Solution-Processed Cu:SnO2 as an Efficient Electron Transport Layer for Fabrication of Low-Temperature Planar Perovskite Solar Cell Under Ambient Conditions

被引:2
作者
Bahadur, Jitendra [1 ,2 ]
Ghahremani, Amir H. [3 ,4 ]
Martin, Blake [5 ]
Pishgar, Sahar [4 ]
Sunkara, Mahendra K. [4 ,5 ]
Druffel, Thad [4 ]
Pal, Kaushik [1 ,6 ]
机构
[1] Indian Inst Technol Roorkee, Ctr Nanotechnol, Roorkee 247667, Uttar Pradesh, India
[2] Madanapalle Inst Technol & Sci, Madanapalle 571325, India
[3] Univ Louisville, Dept Mech Engn, Louisville, KY 40292 USA
[4] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA
[5] Univ Louisville, Dept Chem Engn, Louisville, KY 40292 USA
[6] Indian Inst Technol Roorkee, Dept Mech & Ind Engn, Roorkee 247667, Uttar Pradesh, India
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2022年 / 12卷 / 05期
关键词
Cu-doped tin oxide (SnO2); electron transport layer (ETL); low-temperature annealing; perovskite solar cells (PSCs); THIN-FILMS; TIN OXIDE; DOPED SNO2; PERFORMANCE; HYSTERESIS; PASSIVATION; CH3NH3PBI3; INTERFACE; STABILITY; BARIUM;
D O I
10.1109/JPHOTOV.2022.3162340
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Rapid growth in photovoltaic performance of lead-halide-based perovskite solar cells (PSCs) has made them a potential candidate for emerging solar technology. The perovskite material itself can be manufactured at low temperatures, which makes it attractive for low-cost manufacturing. However, PSCs utilizing a low-temperature-processed metal-oxide electron transport layer have exhibited lower device performance due to less conductivity. The inclusion of metal dopant in this layer is a cheap and desirable approach that improves electrical conductivity and enables facilities for better energy band alignment that plays a crucial role in the obtained photovoltaic performance. In this work, a low-temperature solution-processed copper (Cu)-doped tin oxide (SnO2) is demonstrated as an effective electron transport layer, in which, Cu was simply introduced into the SnO2 solution. An optimal Cu concentration of 3.0 mol% exhibited 11.29% power conversion efficiency (PCE) with 73.38% fill factor (FF), whereas the PSCs utilizing undoped SnO2 resulted in 8.32% PCE and 59.9% FF when processed in ambient conditions with an average relative humidity of 62%. Our photovoltaic results indicated low-temperature-processed Cu-doped SnO2 as a potential candidate for device performance, which is also compatible with high throughput and cost-effective manufacturing of PSCs through automation.
引用
收藏
页码:1162 / 1169
页数:8
相关论文
共 50 条
[21]   Low-Temperature Processed TiOxElectron Transport Layer for Efficient Planar Perovskite Solar Cells [J].
Shahiduzzaman, Md. ;
Kuwahara, Daiki ;
Nakano, Masahiro ;
Karakawa, Makoto ;
Takahashi, Kohshin ;
Nunzi, Jean-Michel ;
Taima, Tetsuya .
NANOMATERIALS, 2020, 10 (09) :1-12
[22]   Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells [J].
Van-Huong Tran ;
Khan, Rizwan ;
Lee, In-Hwan ;
Lee, Soo-Hyoung .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 179 :260-269
[23]   Benefits of fullerene/SnO2 bilayers as electron transport layer for efficient planar perovskite solar cells [J].
Chen, Yun ;
Xu, Cong ;
Xiong, Jian ;
Zhang, Zheling ;
Zhang, Xiuyun ;
Yang, Junliang ;
Xue, Xiaogang ;
Yang, Dong ;
Zhang, Jian .
ORGANIC ELECTRONICS, 2018, 58 :294-300
[24]   Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells [J].
Huang, Xiaokun ;
Hu, Ziyang ;
Xu, Jie ;
Wang, Peng ;
Wang, Liming ;
Zhang, Jing ;
Zhu, Yuejin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 164 :87-92
[25]   Low-temperature processed highly efficient hole transport layer free carbon-based planar perovskite solar cells with SnO2 quantum dot electron transport layer [J].
Vijayaraghavan, S. N. ;
Wall, J. ;
Li, L. ;
Xing, G. ;
Zhang, Q. ;
Yan, F. .
MATERIALS TODAY PHYSICS, 2020, 13
[26]   Characterization of perovskite solar cells with a solution-processed two-stage SnO2 electron transport layer [J].
Kim, Ma Ro ;
Kim, Sang Mo ;
Bark, Chung Wung .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2022, 735 (01) :75-83
[27]   Low-Temperature Solution-Processed SnO2 Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells [J].
Van-Huong Tran ;
Ambade, Rohan B. ;
Ambade, Swapnil B. ;
Lee, Soo-Hyoung ;
Lee, In-Hwan .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1645-1653
[28]   Low-Temperature Solution-Processed Mg:SnO2 Nanoparticles as an Effective Cathode Interfacial Layer for Inverted Polymer Solar Cell [J].
Huang, Shuai ;
Tang, Yuting ;
Dang, Yang ;
Xu, Xu ;
Dong, Qngfeng ;
Kang, Bonan ;
Silva, S. Ravi P. P. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (05) :6702-6710
[29]   A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer [J].
Huang, Shahua ;
Ali, Nasir ;
Huai, Zhaoxiang ;
Ren, Jingpeng ;
Sun, Yansheng ;
Zhao, Xiaohui ;
Fu, Guangsheng ;
Kong, Weiguang ;
Yang, Shaopeng .
ORGANIC ELECTRONICS, 2020, 78
[30]   Solution-processed Cu-doped SnO2 as an effective electron transporting layer for High-Performance planar perovskite solar cells [J].
Zhou, Xiangqing ;
Zhang, Wenfeng ;
Wang, Xiaohong ;
Lin, Puan ;
Zhou, Shenghou ;
Hu, Taotao ;
Tian, Liuwen ;
Wen, Fang ;
Duan, Gongtao ;
Yu, Lang ;
Xiang, Yan ;
Huang, Bensheng ;
Huang, Yuelong .
APPLIED SURFACE SCIENCE, 2022, 584