Detecting quantum correlations for quantum key distribution

被引:1
作者
Curty, M [1 ]
Gühne, O [1 ]
Lewenstein, M [1 ]
Lütkenhaus, N [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys 1, D-91058 Erlangen, Germany
来源
QUANTUM OPTICS AND APPLICATIONS IN COMPUTING AND COMMUNICATIONS II | 2005年 / 5631卷
关键词
quantum key distribution; information theoretic security; entanglement;
D O I
10.1117/12.575411
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Practical quantum key distribution can be understood as a two-step procedure: in a first step two parties exchange quantum mechanical signals and perform measurements on them, in a second step auxiliary classical communication protocols are performed over an authenticated public channel to transform the data of the first step into an information-theoretic secure key. In this article we address the question of necessary conditions on the correlated (classical) data of the first step such that there can be a successful second step at all. As it turns out, a necessary condition is that these data, together with the knowledge about the physical set-up of sender and receiver, allow to establish a proof of effective entanglement between the two parties. We then demonstrate methods to systematically search for such a proof in basic settings, involving the 2-, 4-, and 6-state protocols.
引用
收藏
页码:9 / 19
页数:11
相关论文
共 50 条
  • [1] Bell JS., 1964, PHYS PHYS FIZIKA, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
  • [2] Bennett C.H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [3] Generalized privacy amplification
    Bennett, CH
    Brassard, G
    Crepeau, C
    Maurer, UM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1915 - 1923
  • [4] QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES
    BENNETT, CH
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (21) : 3121 - 3124
  • [5] Purification of noisy entanglement and faithful teleportation via noisy channels
    Bennett, CH
    Brassard, G
    Popescu, S
    Schumacher, B
    Smolin, JA
    Wootters, WK
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (05) : 722 - 725
  • [6] QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM
    BENNETT, CH
    BRASSARD, G
    MERMIN, ND
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (05) : 557 - 559
  • [7] BENOR M, 2004, QUANTPH0409078
  • [8] Brassard G., 1994, LECT NOTES COMPUTER, V765, P410, DOI [DOI 10.1007/3-540-48285-7_35, 10.1007/3-540-48285-7_35]
  • [9] Optimal eavesdropping in quantum cryptography with six states
    Bruss, D
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (14) : 3018 - 3021
  • [10] Reduction criterion for separability
    Cerf, NJ
    Adami, C
    Gingrich, RM
    [J]. PHYSICAL REVIEW A, 1999, 60 (02): : 898 - 909